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Wear leveling techniques in flash-based SSDs aim at distributing the erase cycles as uniformly as possible across
the memory blocks within the SSD in order to extend its life span. The downside of any wear leveling technique
is that it causes additional internal write operations, thereby increasing the so-called write amplification factor,
which equals the ratio between the total number of writes performed and the number of writes requested by
the host system.

In this paper we address the question whether near-perfect wear leveling is possible at low costs in terms
of the write amplification factor. We answer this question affirmatively by presenting a simple randomized
algorithm that combines wear leveling with garbage collection. This algorithm guarantees that the wear
is nearly perfectly balanced at all times, while causing a low increase in the write amplification. This is
demonstrated mathematically using a mean field model in case of uniform random writes and using trace-
driven simulation experiments for general workloads.
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1 INTRODUCTION
Wear leveling (WL) techniques in a flash-based SSD [9] are used to improve the life span of the
device by making sure that the wear among the memory blocks on the device is more or less
balanced, where the wear reflects the number of times that a block has been erased. In other words,
WL techniques aim at distributing the erase cycles as uniformly as possible across the data blocks
within the SSD. This is important as a memory block can only be erased a limited number of times
(which can be as low as a few thousand [11, 15]) without losing the guarantee that the data stored
on the block can be retained for a sufficiently long time. The downside of any WL technique is that
it causes additional internal write operations, thereby increasing the so-called write amplification
(WA) factor, which is defined as the ratio between the total number of writes performed by the
SSD and the number of writes requested by the host system. In a recent paper [13] the increase in
the WA factor was shown to be very substantial for a number of representative WL algorithms
making the authors question the usefulness of wear leveling in modern SSDs.

Due to the limitations of flash-based memory, SSDs make use of out-of-place writes and a garbage
collection (GC) algorithm that reclaims free space to support these out-of-place writes. The main
objective of the GC algorithm is to select blocks with a low number of valid pages [4, 7] and to
relocate the valid pages on a selected block to some other block before the block is erased. Memory
blocks on an SSD contain a fixed number of pages and a copy of a page becomes invalid when it
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2 B. Van Houdt

is rewritten on another block. Note that the GC algorithm aims a keeping the WA factor low by
selecting memory blocks with a low number of valid pages.

In some sense the GC algorithms andWL techniques counteract each other. WL wants to erase all
memory blocks equally often, but the GC algorithm is designed to select and erase blocks with a low
number of valid pages. Moreover, to guarantee the existence of blocks with a low number of valid
pages so-called hot and cold pages are separated (either explicitly using a hot/cold identification
technique [6, 12, 18, 20] or implicitly by separating host requested writes from internal writes [23]).
Hot pages are pages that are frequently rewritten and therefore invalidate quickly, while cold pages
are mostly read and remain valid for long periods of time. Thus by grouping hot pages in blocks,
one automatically creates blocks holding a low number of valid pages and these are frequently
selected by the GC algorithm. Blocks containing mostly cold pages on the other hand are far less
regularly selected as it takes a long time before its pages become invalid. Thus any WL technique
needs to make sure that the cold pages also migrate regularly (e.g., by performing periodic swaps
between blocks), but this clearly comes at the expense of an increase in the WA as demonstrated in
[13] for a number of representative WL algorithms.

The question we address in this paper is:

Can near-perfect wear leveling be achieved at low costs in terms of the write amplification factor?

We answer this question in the affirmative by presenting a simple randomized algorithm that
combines wear leveling with garbage collection. This algorithm achieves near-perfect wear leveling
at all times by design, while we show both mathematically and using trace-based simulation
experiments that it causes a low increase in the write amplification factor.

To measure the unevenness in the wear, we make use of the program/erase (PE) fairness [26]. It is
defined as the ratio between the average number of erase operations performed on a block divided
by the maximum number of erasures performed on a block. Hence the PE fairness lies between
0 and 1 and a PE fairness close to 1 indicates that the wear of the blocks in the systems is well
balanced. The PE fairness affects the SSD endurance which corresponds to the total number of full
drive writes that can be performed before a memory block is erased for the (𝑊𝑚𝑎𝑥 + 1)-th time,
where𝑊𝑚𝑎𝑥 is the number of erasures that a block can tolerate without losing the guarantee that
the data on a block can be retained sufficiently long. Note that the SSD endurance can be expressed
as𝑊𝑚𝑎𝑥 times the PE fairness divided by the WA factor. When the PE fairness is close to one, the
SSD endurance is close to𝑊𝑚𝑎𝑥 /WA and is upper bounded by𝑊𝑚𝑎𝑥 .

In this paper we focus on the setting where hot and cold data is separated implicitly (by separating
host requested writes from internal writes), as this avoids the complicated task of explicitly labeling
pages as hot or cold. In fact such an implicit hot and cold data separator often performs nearly
as well as an explicit separator [24]. The algorithm presented in this paper can be regarded as an
advanced 𝑑-choices GC algorithm that guarantees near-perfect wear leveling. The 𝑑-choices GC
algorithm [22] selects blocks by picking a block with the least number of valid pages among 𝑑
randomly selected blocks. Even for moderate values of 𝑑 , the 𝑑-choices GC performs very similar
to the Greedy GC algorithm that always selects the memory block holding the least number of
valid pages [23, 28].

The algorithm presented has near-perfect wear leveling at all times by design. To demonstrate
that it causes a low increase in theWA factor we use two approaches. First, we assess its performance
using a mean field model for the setting with uniform randomwrites (i.e., without hot and cold data).
While uniform random writes hardly even occur in practice, the Greedy GC algorithm is known to
minimize the WA factor this setting [28], which means we can precisely compute how much larger
the WA factor of the presented algorithm is compared to the optimal WA factor. Second, we perform
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simulation experiments for trace-based workloads that demonstrate that for real workloads the
WA factor of the presented algorithm is quite close to that of the vanilla 𝑑-choices GC algorithm
(which causes very unbalanced wear in the absence of a wear leveling technique [26]).

The paper is structured as follows. In Section 2 we present some background on flash-based SSDs.
The algorithm that has near-perfect wear by design is outlined in Section 3, while its performance
under uniform random writes is studied using a mean field model in Section 4, Some of the
more technical details of this model are deferred to Section 5. Section 6 presents some simulation
experiments using trace-based workloads. Conclusions are drawn in Section 7.

2 FLASH-BASED SSD BACKGROUND
Modern SSDs make use of several channels each connected to a small number of flash chips. Each
flash chip in turn may accommodate multiple dies, each consisting of a few planes. Finally, a single
data plane contains thousands of blocks each holding a fixed number 𝑏 of pages, e.g., 𝑏 = 64 pages
per block. Data reads and writes are performed at the granularity of flash pages. In order to write
data on a page, it must be in the erase state first. However, pages cannot be erased individually,
only entire blocks can be erased. As erasing an entire block and restoring all the data on the block
for each page update would make the device very slow, SSDs use out-of-place writes: whenever
data is written to a page, the old data is simply marked as invalid and the new data is written
elsewhere and marked as valid. Hence, any page is either in the erase, valid or invalid state at any
point in time [5]. Page writes are also called program operations and therefore the number of erase
operations performed on a block is also called the number of program-erase (PE) cycles. In this
paper we use the terms PE cycles and erasures interchangeably.
A possible design is to map logical page addresses to planes in a deterministic manner, that is,

the channel, chip, die and plane numbers are fully determined by the logical address [21]. Within a
plane writes are performed in an out-of-place manner. Therefore the flash translation layer (FTL)
maintains a table that maps logical page numbers to physical page numbers for each plane. However,
recent SSDs do not have such restrictions and may use a single map for the full logical address
space in order to maximize resource efficiency.
The garbage collection algorithm is responsible for selecting the blocks that are erased and

subsequently used to store new data. Garbage collection is only effective if some of the blocks
contain only a limited number of valid pages. To guarantee the existence of such blocks SSDs rely
on over-provisioning, meaning the physical storage capacity of the device, say 𝑁 blocks, exceeds
the logical capacity, say 𝑈 blocks, such that at least a fraction 𝑆 𝑓 = 1 − 𝑈 /𝑁 (e.g., 0.1), called
the spare factor, of the total number of pages is not in the valid state. For further use we denote
𝜌 = 1 − 𝑆 𝑓 = 𝑈 /𝑁 .

A flash cell can correctly hold stored data for a limited amount of time, called the retention time.
If a block is not rewritten before the retention time, its data can no longer be retrieved correctly.
The retention time of a block decreases as the number of PE cycles performed on it increases. For
instance, in order to guarantee retention for as long as 3 years, the number of PE cycles on a block
may be limited to as few as 3K [15]. Thus to prolong the lifetime of the device a wear leveling
technique is used to balance the number of erasures performed among the blocks.
A natural choice for the GC algorithm is the Greedy GC algorithm. This GC algorithm selects

a victim block that currently holds the least number of valid pages among all blocks. In fact this
algorithm is known to minimize the WA under uniform random writes [28] and its performance
was shown to be close (within 5%) to an offline near-optimal GC algorithm for 10MSR traces in
case only a single block is used to write the new data [19]. However, in the presence of hot and
cold data the WA can be greatly reduced (by more than 50%) by relying on multiple blocks to store
the new data [19, 23].

, Vol. 1, No. 1, Article . Publication date: December 2022.



4 B. Van Houdt

Start

Select new victim block 𝑣 ;
𝑗 := number of valid pages on 𝑣 ;

𝑘 := number of pages in erase state on WFI;

𝑗 ≤ 𝑘

Copy 𝑗 valid pages on 𝑣 to WFI;
Erase 𝑣 ;

𝑛 := number of times 𝑣 was erased;

𝑛 = 𝑤𝑚𝑎𝑥 (𝑡)

Block 𝑣 is the new WFE;

Stop

Copy 𝑗 valid pages on 𝑣 to WFI and RAM;
Erase 𝑣 ;

Write 𝑗 − 𝑘 valid pages back to 𝑣 ;
Block 𝑣 is the new WFI;

Select new move block 𝑧;
Copy valid pages of 𝑧 to 𝑣 ;

Erase 𝑧;
Block 𝑧 is the new WFE;

True

False

False

True

Fig. 1. Flow diagram of the randomized GC algorithm

3 A SIMPLE RANDOMIZED ALGORITHM
In this section we introduce a simple randomized garbage collection algorithm such that the
number of erase cycles performed on any two blocks differs by at most Δ𝑤 at all times, where
Δ𝑤 is an input parameter. This means that the algorithm has a guaranteed PE fairness of at least
1 − Δ𝑤/𝑊𝑚𝑎𝑥 , where𝑊𝑚𝑎𝑥 is the maximum number of erasures a block can tolerate. Thus, if we
pick Δ𝑤 =𝑊𝑚𝑎𝑥/100 we get a PE fairness of at least 0.99.

At any point in time our algorithm marks two blocks (initially selected at random) and these two
blocks are used to support write operations. One of these two blocks is called the write frontier
for external writes (WFE) and the other the write frontier for internal writes (WFI). Any write
requested by the host system is written to the WFE and changes the state of one of its pages from
the erase state to the valid state. Internal writes triggered by the GC algorithm are written to the
WFI. Whenever the WFE becomes full (meaning none of its pages is in the erase state) the GC
algorithm is triggered to select a new WFE.
For every block 𝑎 we maintain an erase counter 𝑐𝑎 , which counts the number of PE cycles

performed thus far on block 𝑎. Our algorithm guarantees that the number of PE cycles performed
thus far on any two blocks differs by at most Δ𝑤 . Thus, if𝑤𝑚𝑖𝑛 (𝑡) reflects the least number of PE
cycles performed on any block at time 𝑡 , then all blocks experienced at most𝑤𝑚𝑎𝑥 (𝑡) = 𝑤𝑚𝑖𝑛 (𝑡)+Δ𝑤

at time 𝑡 . If we pick Δ𝑤 such that it is of the form 2𝑘 − 1 for some 𝑘 , then 𝑘 = log2 (Δ𝑤 + 1) bits per
block suffice to maintain these erase counters as only the offset with respect to𝑤𝑚𝑖𝑛 (𝑡) matters. In
our experiments we typically set Δ𝑤 = 31 or 63 and therefore we only require 𝑘 = 5 or 6 bits per
block to maintain these erase counters.

We now discuss the manner in which our randomized algorithm operates. A flow diagram of the
algorithm is presented in Figure 1. The algorithm is triggered when the WFE becomes full (due
to a write requested by the host system). Assume this happens at time 𝑡 . Our algorithm starts by
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selecting 𝑑 blocks at random1 among all the blocks with an erase counter strictly less than𝑤𝑚𝑎𝑥 (𝑡).
The block 𝑣 that contains the least number of valid pages among these 𝑑 blocks is called the victim
block (ties are broken at random). Thus, contrary to the classic 𝑑-choices GC algorithm [22], all
the blocks with an erase counter equal to𝑤𝑚𝑎𝑥 (𝑡) are excluded from becoming the victim block.
Suppose that the victim block contains 𝑗 valid pages. We consider two cases.
(1) If there are 𝑘 ≥ 𝑗 pages left on the WFI that are in the erase state, the 𝑗 valid pages of the

victim block 𝑣 are copied to the WFI and subsequently the victim block is erased. As a result
the number of pages in the erase state on the WFI reduces by 𝑗 (as these pages became valid)
and the erase counter of the victim block increases by one. As the value of erase counter of
the victim block was at most𝑤𝑚𝑎𝑥 (𝑡) − 1, it remains upper bounded by𝑤𝑚𝑎𝑥 (𝑡).

(1A) If the number of erasures on the victim block 𝑣 remained below 𝑤𝑚𝑎𝑥 (𝑡), the victim
block becomes the new WFE and contains 𝑏 pages in the erase state.

(1B) If the number of erasures on the victim block 𝑣 became 𝑤𝑚𝑎𝑥 (𝑡) an additional move
operation is performed. More specifically, our algorithm selects 𝑑∗ blocks at random that
have been erased exactly𝑤𝑚𝑖𝑛 (𝑡) times 2. The block 𝑧 that contains the most number of
valid pages among these 𝑑∗ blocks is termed the move block (ties are broken at random).
Next, all the valid pages of the move block 𝑧 are written to the victim block 𝑣 , the move
block 𝑧 is erased and its erase counter is increased to 𝑤𝑚𝑖𝑛 (𝑡) + 1. In this case the move
block 𝑧 becomes the new WFE. Note that all the valid pages on the move block can be
copied to the victim block 𝑣 as block 𝑣 was erased just prior to the move.

(2) If there are fewer than 𝑗 pages left on the WFI that are in the erase state, say 𝑘 < 𝑗 , then
our algorithm first copies the first 𝑘 of the 𝑗 valid pages of the victim block to the WFI and
temporarily stores the remaining 𝑗 − 𝑘 valid pages (in RAM). Next our algorithm erases the
victim block 𝑣 , copies the remaining 𝑗 − 𝑘 valid pages back to the victim block and labels the
victim block as the new WFI (that now contains 𝑗 − 𝑘 valid pages and 𝑏 − ( 𝑗 − 𝑘) pages in
the erase state). In this case our algorithm is immediately executed again in search of a new
WFE.

Note that if during one of these two cases the last block with an erase counter equal to𝑤𝑚𝑖𝑛 (𝑡) got
erased,𝑤𝑚𝑖𝑛 (𝑡) increases by one (and so does𝑤𝑚𝑎𝑥 (𝑡) by definition).

There are two important reasons for implementing the move operation in Case (1B).
(1) In order to limit the write amplification, blocks with a low number of valid pages should

preferably have fewer than𝑤𝑚𝑎𝑥 (𝑡) erasures (as such a block cannot be selected as a victim
block). As hot data tends to become invalid quickly, we want to avoid that hot data is written
on a block that experienced exactly𝑤𝑚𝑎𝑥 (𝑡) PE cycles. In other words, we want to avoid that
the WFE has an erase counter equal to𝑤𝑚𝑎𝑥 (𝑡). The move operation does exactly this as it
makes sure that the new WFE has an erase counter equal to𝑤𝑚𝑖𝑛 (𝑡) + 1 instead of𝑤𝑚𝑎𝑥 (𝑡).
The idea of selecting a move block with many valid pages is based on the fact that after the
move, the victim block has an erase counter equal to𝑤𝑚𝑎𝑥 (𝑡) and should therefore contain
as much cold data as possible. Thus although moving the valid pages of a block with the most
number of valid pages is more expensive, it gives us the best odds that cold data is moved
instead of hot data.

1In the (unlikely) event that there are only 𝑐 < 𝑑 such blocks left, we simply select these 𝑐 blocks.
2If there are only 𝑐 < 𝑑∗ blocks with exactly 𝑤𝑚𝑖𝑛 (𝑡 ) PE cycles, these 𝑐 blocks are selected.
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(2) It is important to limit the number of blocks with 𝑤𝑚𝑎𝑥 (𝑡) PE cycles as much as possible
(as these cannot be selected as a victim block). Without the move operations the number
of blocks left with less than𝑤𝑚𝑎𝑥 (𝑡) erasures before the last block with𝑤𝑚𝑖𝑛 (𝑡) erasures is
selected may be very low. In fact this will often be the case as without the move operation,
the last blocks with𝑤𝑚𝑖𝑛 (𝑡) erasures contain many valid pages and are therefore unlikely to
be selected as a victim block (unless 𝑑 is very small). This also explains why selecting a block
with many valid pages as a move block is useful. Not only does it increase our chance to move
cold data, as explained before, it also guarantees that far more blocks with less than𝑤𝑚𝑎𝑥 (𝑡)
erasures remain when the last blocks with exactly 𝑤𝑚𝑖𝑛 (𝑡) erasures are selected. In short,
without the move operations there will be a period of high write amplification whenever the
value𝑤𝑚𝑖𝑛 (𝑡) is about to increase by one.

Yet another way to think about this algorithm is to consider the following thought experiment.
Suppose we have a host system that repeatedly writes the same sequence S of 𝑏 logical pages
(mixed with read operations). Assume the sequence S is initially placed on the same block, say
block 𝑥1, there is a single free block, say block 𝑥2, and all the other blocks contain 𝑏 valid pages
that are read only. Further assume all erase counters are initially equal to zero and 𝑑 is equal to the
number of blocks on the device (meaning we select the victim in a greedy manner among all the
blocks that have an erase counter below𝑤𝑚𝑎𝑥 (𝑡)). To achieve a high PE fairness in such a system,
the sequence S should migrate regularly from one block to the next. However, in order to write
these 𝑏 pages on a block with read only data, the read only data must be moved, which causes
internal writes and thus write amplification.
With the above algorithm the sequence S is first written 2(Δ𝑤 − 1) times in an alternating

fashion between block 𝑥1 and 𝑥2. At this point block 𝑥1 contains the sequence S, block 𝑥2 is free
and both blocks have been erased Δ𝑤 − 1 times. After the sequence S moves to block 𝑥2 for the
Δ𝑤-th time, GC is triggered and a new block 𝑥3 with an erase counter equal to zero is selected as
the move block and becomes the new WFE (while its read only data is moved to block 𝑥1). Next the
sequence S is written to block 𝑥3, GC is triggered and block 𝑥2 becomes the victim block. Therefore
𝑥2 is erased for the Δ𝑤-th time and another move is performed that moves the read only data from
some block 𝑥4 to 𝑥2 and now 𝑥4 is free and becomes the new WFE. This process is repeated where
blocks 𝑥3 and 𝑥4 take the roles of 𝑥1 and 𝑥2. In this manner we only need to perform 2 expensive
move operations every 2Δ𝑤 times that the sequence S is written. This implies that we have a write
amplification of only (2Δ𝑤𝑏 + 2𝑏)/(2Δ𝑤𝑏) = 1 + 1/Δ𝑤 .

4 UNIFORM RANDOMWRITES
In this section we introduce a mean field model to assess the write amplification factor of the
GC algorithm with guaranteed PE fairness presented in Section 3 under uniform random writes.
Uniform random writes means that all the logical pages are written equally likely and there is no
correlation between the logical page numbers of consecutive writes. For uniform random writes the
greedy garbage collection algorithm (that always selects a block with as few valid pages as possible
among all the blocks) is known to minimize the write amplification [28]. While assuming uniform
random writes is restrictive from a practical point of view, the main insights provided by this mean
field model turn out to be in good agreement with the trace-based simulation experiments presented
in Section 6. This mean field model also provides us with the ability to detect very minor changes
in the system performance as it is not hampered by the noise present in simulation experiments.
We focus on the write amplification as the PE fairness is guaranteed to be close to one and the

endurance is close to𝑊𝑚𝑎𝑥 divided by the write amplification if the PE fairness is close to one.
Nevertheless we also present some numbers for the PE fairness. In Section 4.1 we present the mean
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field model, while Section 4.2 discusses the changes required to the model when modifying some
aspects of the randomized algorithm. The model is validated in Section 4.3, where we also discuss
convergence. Finally, numerical results and insights are presented in Section 4.4.

4.1 Mean field model
The mean field model presented next is inspired by the mean field models introduced in [22, 23, 26],
but bears some significant differences as discussed in Section 4.3. The model is characterized by a
set of ordinary differential equations (ODEs) that describe the evolution of some variables over
time. In our case the variables are𝑚𝑖,𝑤 (𝑡) ∈ [0, 1] for 𝑖 = 0, . . . , 𝑏 and 𝑤 = 𝑤𝑚𝑖𝑛 (𝑡), . . . ,𝑤𝑚𝑎𝑥 (𝑡),
where𝑚𝑖,𝑤 (𝑡) represents the fraction of all the memory blocks at time 𝑡 holding 𝑖 valid pages that
have been erased𝑤 times. If we collect these variables in a vector

®𝑚(𝑡) = (𝑚0,0 (𝑡),𝑚1,0 (𝑡), . . . ,𝑚𝑏,0 (𝑡),𝑚0,1 (𝑡),𝑚1,1 (𝑡), . . . ,𝑚𝑏,1 (𝑡),𝑚0,2 (𝑡) . . .),
the mean field model is characterized by a set of ODEs of the form:

𝑑

𝑑𝑡
®𝑚(𝑡) = 𝐹 ( ®𝑚(𝑡)),

for some drift function 𝐹 with component functions 𝑓𝑖,𝑤 with 𝑖 = 0, . . . , 𝑏 and𝑤 = 𝑤𝑚𝑖𝑛, . . . ,𝑤𝑚𝑎𝑥 ,
that is, 𝑑

𝑑𝑡
𝑚𝑖,𝑤 (𝑡) = 𝑓𝑖,𝑤 ( ®𝑚(𝑡)). After obtaining an expression for the drift functions 𝑓𝑖,𝑤 we assess

the performance of the algorithm presented in Section 3 by numerically solving this set of ODEs
on the interval (0,𝑇 ), where 𝑇 is the smallest real number such that𝑤𝑚𝑎𝑥 (𝑇 ) =𝑊𝑚𝑎𝑥 .
The drift functions 𝑓𝑖, 𝑗 are the fluid limits of the discrete time model that observes the state of

the memory blocks whenever a call to the GC algorithm takes place. When such a call takes place
the WFE is full, but the WFI may contain some valid pages. We denote the state of the WFI as

( 𝑗∗,𝑤∗) ∈ {1, . . . , 𝑏} × {𝑤𝑚𝑖𝑛 + 1, . . . ,𝑤𝑚𝑎𝑥 },
where 𝑗∗ is the number of valid pages and𝑤∗ the number of erasures performed on the WFI. As
the operation of the algorithm depends on the state of the WFI, the evolution of the variables𝑚𝑖,𝑤

depends not only on ®𝑚(𝑡), but also on the state ( 𝑗∗,𝑤∗) of the WFI.
The mean field model corresponds to a rescaled process of the discrete time Markov chain that

observes the system whenever a call to the GC algorithm is made. It is clear that the WFI makes
one transition per time unit in this discrete time Markoc chain. However, if we tag a random block
and look at its evolution, the probability that the state of this tagged block changes during a single
transition scales as 1/𝑁 due to the manner in which the victim block is selected, where 𝑁 is the
number of blocks. Thus the intensity of the transitions of the tagged block vanishes as 𝑁 tends
to infinity. This suggests that a time scale separation argument can be used [3]. Hence, the drift
functions 𝑓𝑖,𝑤 can written in terms of the steady state probabilities 𝜋 𝑗∗,𝑤∗ ( ®𝑚(𝑡)) of the state of the
WFI given ®𝑚(𝑡). More precisely,

𝑓𝑖,𝑤 ( ®𝑚(𝑡)) =
∑︁
𝑗∗,𝑤∗

𝜋 𝑗∗,𝑤∗ ( ®𝑚(𝑡)) 𝑓𝑖,𝑤 ( ®𝑚(𝑡), 𝑗∗,𝑤∗),

where 𝑓𝑖,𝑤 ( ®𝑚(𝑡), 𝑗∗,𝑤∗) is the conditional drift function of 𝑚𝑖,𝑤 given that the WFI is in state
( 𝑗∗,𝑤∗). In Section 5 we prove that

𝑤𝑚𝑎𝑥 (𝑡 )∑︁
𝑤∗=𝑤𝑚𝑖𝑛 (𝑡 )+1

𝜋 𝑗∗,𝑤∗ ( ®𝑚(𝑡)) = 1/𝑏,

which means that the number of valid pages 𝑗∗ on theWFI has a uniform distribution. In the remainder
of this section we present the resulting drift functions 𝑓𝑖,𝑤 given that 𝑗∗ has a uniform distribution.
The derivation is split in two steps: (1) we derive an expression for the probabilities 𝑝𝑖,𝑤 ( ®𝑚) that
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8 B. Van Houdt

the GC algorithm selects a victim block with 𝑖 valid pages that has been erased𝑤 times, given that
the system is in state ®𝑚 and (2) we express the drift functions 𝑓𝑖,𝑤 ( ®𝑚) in terms of the probabilities
𝑝𝑖,𝑤 ( ®𝑚).

Step 1: the probabilities 𝑝𝑖,𝑤 ( ®𝑚). Let 𝑝𝑖,𝑤 ( ®𝑚) be the probability that the GC algorithm selects a
victim block with 𝑖 valid pages that has been erased𝑤 times given that the occupancy vector equals
®𝑚 = (𝑚0,0,𝑚1,0, . . . ,𝑚0,𝑏,𝑚0,1,𝑚1,1, . . . ,𝑚0,1, . . .). Let𝑤𝑚𝑖𝑛 ( ®𝑚) be the smallest𝑤 for which𝑚𝑖,𝑤 > 0
for some 𝑖 , that is,𝑤𝑚𝑖𝑛 ( ®𝑚) = min{𝑤 |∑𝑏

𝑖=0𝑚𝑖,𝑤 > 0}. Define𝑤𝑚𝑎𝑥 ( ®𝑚) = 𝑤𝑚𝑖𝑛 ( ®𝑚) +Δ𝑤 . By design,
we have𝑚𝑖,𝑤 = 0 for 𝑤 > 𝑤𝑚𝑎𝑥 ( ®𝑚) and 𝑤 < 𝑤𝑚𝑖𝑛 ( ®𝑚). To ease the notation, we simply refer to
𝑤𝑚𝑖𝑛 ( ®𝑚) and 𝑤𝑚𝑎𝑥 ( ®𝑚) as 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 , respectively. Further define 𝑝𝑖 ( ®𝑚) = ∑𝑤𝑚𝑎𝑥−1

𝑤=𝑤𝑚𝑖𝑛
𝑝𝑖,𝑤 ( ®𝑚).

Note that 𝑝𝑖 ( ®𝑚) is the probability that the GC algorithm selects a victim block containing exactly 𝑖
valid pages. It can be computed as

𝑝𝑖 ( ®𝑚) =

(∑𝑏
ℓ=𝑖

∑𝑤𝑚𝑎𝑥−1
𝑤=𝑤𝑚𝑖𝑛

𝑚ℓ,𝑤

)𝑑
−

(∑𝑏
ℓ=𝑖+1

∑𝑤𝑚𝑎𝑥−1
𝑤=𝑤𝑚𝑖𝑛

𝑚ℓ,𝑤

)𝑑
(∑𝑏

ℓ=0
∑𝑤𝑚𝑎𝑥−1

𝑤=𝑤𝑚𝑖𝑛
𝑚ℓ,𝑤

)𝑑 , (1)

as each of the 𝑑 randomly selected blocks have an erase counter below𝑤𝑚𝑎𝑥 , must contain at least
𝑖 valid pages and not all of them contain more than 𝑖 valid pages. The probability 𝑝𝑖,𝑤 ( ®𝑚) can then
be expressed as

𝑝𝑖,𝑤 ( ®𝑚) = 𝑚𝑖,𝑤∑𝑤𝑚𝑎𝑥−1
𝑤=𝑤𝑚𝑖𝑛

𝑚𝑖,𝑤

𝑝𝑖 ( ®𝑚), (2)

as the GC algorithm selects the block with the least number of valid pages among the 𝑑 randomly
selected blocks without taking the erase counter values into account.

Step 2: the drift functions 𝑓𝑖,𝑤 ( ®𝑚). The drift 𝑓𝑖,𝑤 ( ®𝑚) indicates how𝑚𝑖,𝑤 changes over time
when the occupancy vector equals ®𝑚. We write the drift as the sum of 3 terms:

𝑓𝑖,𝑤 ( ®𝑚) = 𝑓 (𝑛𝑜𝑚𝑜𝑣𝑒 )
𝑖,𝑤

( ®𝑚) + 𝑓 (𝑚𝑜𝑣𝑒,1)
𝑖,𝑤

( ®𝑚) + 𝑓 (𝑚𝑜𝑣𝑒,2)
𝑖,𝑤

( ®𝑚).
The first term represents the drift in case that we never perform the move operation in Step (1B) of
the algorithm. The two remaining terms take care of the changes made to𝑚𝑖,𝑤 due to the move
operation.

We now derive the term 𝑓
(𝑛𝑜𝑚𝑜𝑣𝑒 )
𝑖,𝑤

( ®𝑚) which has a similar form as the drift functions in [26]. First
note that 𝑖𝑚𝑖,𝑤/𝑏 (1 − 𝑆 𝑓 ) is the probability that a random write invalidates a page on a memory
block with 𝑖 valid pages and 𝑤 erasures (as a memory block contains 𝑏 (1 − 𝑆 𝑓 ) valid pages on
average). Thus a single random write causes a drift of

(𝑖 + 1)𝑚𝑖+1,𝑤 − 𝑖𝑚𝑖,𝑤

𝑏 (1 − 𝑆 𝑓 )
to𝑚𝑖,𝑤 . The number of random writes that take place in between two calls to the GC algorithm
equals 𝑏 times the probability that all the pages on the victim block can be transferred to the WFI.
We now use the fact that the number of valid pages on theWFI has a uniform distribution. Therefore,
a victim block holding 𝑏 − 𝑗 valid pages can copy all of its valid pages to the WFI with probability
𝑗/𝑏. Hence, the mean number of writes between two GC calls equals 𝑏 times

∑𝑏
𝑗=0 𝑝𝑏− 𝑗 ( ®𝑚) 𝑗

𝑏
. The

mean field model is the fluid limit of the discrete system that observes the system just prior to a
GC call, therefore the random writes cause a total drift of

(𝑖 + 1)𝑚𝑖+1,𝑤 − 𝑖𝑚𝑖,𝑤

𝑏 (1 − 𝑆 𝑓 )

(
𝑏∑︁
𝑗=1

𝑝𝑏− 𝑗 ( ®𝑚) 𝑗
)
,
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to𝑚𝑖,𝑤 . Finally,𝑚𝑖,𝑤 decreases when the GC algorithm selects a block with 𝑖 valid pages and 𝑤
erasures and increases if a victim block was selected with𝑤 − 1 erasures provided that 𝑖 = 𝑏 (as the
victim block is full when the next GC call occurs). Hence,

𝑓
(𝑛𝑜𝑚𝑜𝑣𝑒 )
𝑖,𝑤

( ®𝑚) = (𝑖 + 1)𝑚𝑖+1,𝑤 − 𝑖𝑚𝑖,𝑤

𝑏 (1 − 𝑆 𝑓 )

(
𝑏∑︁
𝑗=1

𝑝𝑏− 𝑗 ( ®𝑚) 𝑗
)

− 𝑝𝑖,𝑤 ( ®𝑚) + 1[𝑖 = 𝑏,𝑤 > 𝑤𝑚𝑖𝑛]
𝑏∑︁
ℓ=0

𝑝ℓ,𝑤−1 ( ®𝑚). (3)

To specify the terms in 𝑓𝑖, 𝑗 ( ®𝑚) related to the move operation, we first define 𝑝𝑚𝑜𝑣𝑒 ( ®𝑚) which
represents the probability that a GC call requires a move operation given that the occupancy
measure equals ®𝑚. It is clearly given by

𝑝𝑚𝑜𝑣𝑒 ( ®𝑚) =
𝑏∑︁
ℓ=0

𝑏 − ℓ
𝑏

𝑝ℓ,𝑤𝑚𝑎𝑥−1 ( ®𝑚), (4)

as a move occurs when a block with exactly𝑤𝑚𝑎𝑥 − 1 erasures is chosen as the victim block and
the ℓ valid pages on the victim can be copied to the WFI (where we again rely on the fact that the
number of valid pages on the WFI is uniformly distributed). The first term due to the presence of
the move is defined as

𝑓
(𝑚𝑜𝑣𝑒,1)
𝑖,𝑤

( ®𝑚) = (1[𝑤 = 𝑤𝑚𝑖𝑛+1] − 1[𝑤 = 𝑤𝑚𝑎𝑥 ])𝑝𝑚𝑜𝑣𝑒 ( ®𝑚)1[𝑖 = 𝑏] . (5)

This term is due to the fact that after a move operation the WFE is a block with𝑤𝑚𝑖𝑛 + 1 erasures
as opposed to being a block with 𝑤𝑚𝑎𝑥 erasures. The next term captures the change due to the
valid pages that are moved from the move to the victim block:

𝑓
(𝑚𝑜𝑣𝑒,2)
𝑖,𝑤

( ®𝑚) = (1[𝑤 = 𝑤𝑚𝑎𝑥 ] − 1[𝑤 = 𝑤𝑚𝑖𝑛])𝑝𝑚𝑜𝑣𝑒 ( ®𝑚)𝑞𝑚𝑜𝑠𝑡
𝑖 ( ®𝑚), (6)

where 𝑞𝑚𝑜𝑠𝑡
𝑖 ( ®𝑚) represents the probability that the move block contains exactly 𝑖 valid pages. This

probability equals

𝑞𝑚𝑜𝑠𝑡
𝑖 ( ®𝑚) =

(∑𝑖
ℓ=0𝑚ℓ,𝑤𝑚𝑖𝑛

)𝑑∗
−

(∑𝑖−1
ℓ=0𝑚ℓ,𝑤𝑚𝑖𝑛

)𝑑∗(∑𝑏
ℓ=0𝑚ℓ,𝑤𝑚𝑖𝑛

)𝑑∗ , (7)

as the move block contains the most number of valid pages among 𝑑∗ randomly selected blocks
with exactly𝑤𝑚𝑖𝑛 erasures.

These mean field equations are used as follows to determine the write amplification of the
proposed algorithm. We consider the system up to the point where the value of𝑤𝑚𝑎𝑥 reaches some
predefined value𝑊𝑚𝑎𝑥 . The mean field approach exists in numerically solving the set of equations
𝑑
𝑑𝑡
𝑚𝑖,𝑤 (𝑡) = 𝑓𝑖,𝑤 ( ®𝑚(𝑡)) given ®𝑚(0), which reflects the occupancy measure at time 0 (i.e., the initial

state of the drive). We use a simple Euler iteration to solve these equations except that some extra
care is needed whenever we hit a surface where

∑𝑏
ℓ=0𝑚ℓ,𝑤𝑚𝑖𝑛

hits zero.
The write amplification can be expressed as 𝐸𝑡𝑜𝑡/𝐸ℎ𝑜𝑠𝑡 , where 𝐸𝑡𝑜𝑡 is the mean number of host

and internal writes that is performed per GC call and 𝐸ℎ𝑜𝑠𝑡 is the mean number of host writes that
can be supported per GC call. If the GC algorithm selects a victim block at time 𝑡 with less than
𝑤𝑚𝑎𝑥 − 1 erasures, this block is eventually filled with 𝑏 host or internal writes (either as WFE or
WFI). With probability 𝑝𝑚𝑜𝑣𝑒 (𝑚(𝑡)) the victim block was erased exactly𝑤𝑚𝑎𝑥 − 1 times and is filled
with

∑𝑏
𝑖=1 𝑖𝑞

𝑚𝑜𝑠𝑡
𝑖 (𝑚(𝑡)) internal page writes on average, while the move block is filled with 𝑏 host
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10 B. Van Houdt

𝑏 𝑑 𝑑∗ 𝜌 Δ𝑤 mean field simulation
16 50 2 0.9 7 4.3198 4.3195 ± 0.2030 E-3
16 10 10 0.9 15 4.3864 4.3859 ± 0.1208 E-3
32 5 30 0.9 31 5.1335 5.1326 ± 0.1320 E-3
32 50 30 0.8 63 2.5237 2.5242 ± 0.0543 E-3
64 10 5 0.85 15 3.5176 3.5185 ± 0.2835 E-3
64 20 3 0.88 7 4.2875 4.2888 ± 0.2156 E-3

Table 1. Validation of the mean field model using simulation (averaged over 5 runs) for a system with
𝑁 = 10, 000/𝜌 blocks and𝑊𝑚𝑎𝑥 = 2000. Relative errors well below 1% are observed in all cases.

writes. Further, 𝐸ℎ𝑜𝑠𝑡 is simply the mean number of pages on the victim block that are not in the
valid state. Hence, the write amplification can be computed as

𝑏 + 1
𝑇𝑊𝑚𝑎𝑥

∫ 𝑇𝑊𝑚𝑎𝑥

0 𝑝𝑚𝑜𝑣𝑒 (𝑚(𝑡))
(∑𝑏

𝑖=1 𝑖𝑞
𝑚𝑜𝑠𝑡
𝑖 (𝑚(𝑡))

)
𝑑𝑡

𝑏 − 1
𝑇𝑊𝑚𝑎𝑥

∫ 𝑇𝑊𝑚𝑎𝑥

0

(∑𝑏
𝑖=1 𝑖𝑝𝑖 (𝑚(𝑡))

)
𝑑𝑡

, (8)

where 𝑇𝑥 is the smallest 𝑡 value for which𝑚𝑖,𝑥+1 (𝑡) becomes larger than zero for some 𝑖 .

4.2 Model variations
The mean field model introduced in Section 4.1 can be easily modified to investigate the impact of
a number of algorithm design choices. For instance, to understand what the impact of the move
operation is, we can simply set 𝑝𝑚𝑜𝑣𝑒 ( ®𝑚) equal to zero. To see what happens if we adapt the move
operation such that a block with the least number of valid pages and exactly 𝑤𝑚𝑖𝑛 PE cycles is
selected it suffices to use 𝑞𝑙𝑒𝑎𝑠𝑡𝑖 ( ®𝑚) instead of 𝑞𝑚𝑜𝑠𝑡

𝑖 ( ®𝑚) with

𝑞𝑙𝑒𝑎𝑠𝑡𝑖 ( ®𝑚) =

(∑𝑏
ℓ=𝑖𝑚ℓ,𝑤𝑚𝑖𝑛

)𝑑∗

−
(∑𝑏

ℓ=𝑖+1𝑚ℓ,𝑤𝑚𝑖𝑛

)𝑑∗

(∑𝑏
ℓ=0𝑚ℓ,𝑤𝑚𝑖𝑛

)𝑑∗ . (9)

Another interesting question is to see how the performance alters when we use a single WF (instead
of the WFI/WFE). With a single WF all host writes are written to the WF. If the WF is full, the GC
selects a victim block (with at most𝑤𝑚𝑎𝑥 − 1 erasures), copies its valid pages to memory, erases the
block and places the valid pages back on the victim block unless the erase counter of the victim
equalled𝑤𝑚𝑎𝑥 − 1. In the latter case a move operation is performed as in Case (1B) of our algorithm.
Regarding the mean field model, the only required change is that 𝑝𝑚𝑜𝑣𝑒 ( ®𝑚) must be replaced by

𝑝
𝑠𝑖𝑛𝑔𝑙𝑒𝑊 𝐹
𝑚𝑜𝑣𝑒 ( ®𝑚) =

𝑏∑︁
ℓ=0

𝑝ℓ,𝑤𝑚𝑎𝑥−1 ( ®𝑚),

as we always perform a move operation whenever a block is selected with exactly𝑤𝑚𝑎𝑥 −1 erasures.
Note that without the move operation the model with the single WF and WFI/WFE are identical
and therefore so is the performance in case of uniform random writes (as in [22]).

4.3 Convergence and model validation
A first difference between the model in this paper and those in [22, 23] is that we are interested in
the system behavior over a finite time interval (that is, until a block is erased for the𝑊𝑚𝑎𝑥 + 1-th
time) and not in a fixed point. In fact the current model does not have a fixed point even if we only
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work with the offset of𝑤 with respect to𝑤𝑚𝑖𝑛 , that is, make use of the variables 𝑣𝑖,𝑤 =𝑚𝑖,𝑤+𝑤𝑚𝑖𝑛

with 𝑤 = 0, . . . ,Δ𝑤 . Typically convergence towards the mean field limit is easier to prove over
finite time scales as there is no need to prove global attraction of the fixed point.

The fact that the mean field equations capture the proper limit behavior as the number of blocks
𝑁 on the SSD device tends to infinity as was proven in [22, 23] using the framework in [3] over
finite time scales. However, contrary to these models, the drift functions 𝑓𝑖,𝑤 ( ®𝑚) of our model
are not a smooth function in ®𝑚 due to their dependence on 𝑤𝑚𝑖𝑛 which occasionally jumps up
by one whenever

∑𝑏
ℓ=0𝑚ℓ,𝑤𝑚𝑖𝑛

hits zero. As a result assumptions H4 and H5 in [3] do not hold.
These two assumptions demand that the drift equations are smooth in ®𝑚 (this is H5), and the
transition probabilities of the so-called resource in [3] are also smooth in ®𝑚 (this is H4). The latter
corresponds to the WFI state in our case (see (14)). Although traditional mean field results such
as Kurtz’ theorem [8] have been generalized to settings with discontinuous drifts [10], no such
relaxations for assumptions H4 and H5 in [3] have appeared in the literature. In fact, examples
of mean field models can be constructed where convergence does not occur if the smoothness of
assumptions H4 and H5 in [3] are violated. This implies that proving convergence is challenging
and requires model specific arguments. Intuitively it seems that system can be decoupled in periods
where the drift is Lipschitz continuous (when𝑤𝑚𝑖𝑛 (𝑡) is 𝜖 bounded away from 0) and periods that
contain the discontinuities. The duration of the latter periods should be small/negligible compared
to the length of the Lipschitz continuous periods, which suggests that the convergence to the mean
field model is likely to remain valid. It is however unclear how to formalize such an argument. As
such coming up with a formal proof that the mean field model captures the proper limit behavior
remains an open problem.

In the absence of a convergence proof, we illustrate the accuracy of the mean field model using
simulation instead. We simulate a system consisting of 𝑁 blocks and a workload consisting of
uniform random writes. Hence the simulated system is identical to the mean field model, except
that it considers a finite number of blocks 𝑁 . More specifically we simulate a system with 10000×𝑏
logical pages and thus 𝑁 = 10000/𝜌 physical blocks. The number of erasures that a block can
tolerate𝑊𝑚𝑎𝑥 was set equal to 2000. Further increasing this value has no noticeable impact on the
results. The time until the first block reached 500 erasures was used as a warm up period. When
computing the mean field write amplification we therefore used (8), but integrated from time 𝑇500
until𝑇2000 instead of integrating from time𝑇 = 0. The logical pages were initially placed at random
random over the 𝑁𝑏 physical pages in the simulation, while for the mean field model the initial
state was given by𝑚𝑖,0 =

(
𝑏
𝑖

)
𝜌𝑖 (1− 𝜌)𝑏−𝑖 (that is, the number of valid pages on a block is binomially

distributed with parameters (𝑏, 𝜌)).
Table 1 presents the comparison for a number of arbitrarily chosen parameter settings. In all

cases we observe a relative error well below one percent. The accuracy even further improves when
increasing the system size (i.e., number of blocks). The write amplification values listed in this table
may appear to be quite high, but this is merely due to the uniform random writes. For instance
the greedy algorithm, that minimizes the write amplification under uniform random writes, has a
write amplification of 3.9814 for 𝑏 = 16 and 𝜌 = 0.9 and of 2.5136 for 𝑏 = 32 and 𝜌 = 0.8.

4.4 Mean field numerical results
In this section we present various numerical results using the mean field model. The main insight
gained from these experiments is:

• Under uniform random writes the proposed algorithm in Section 3, with 𝑑 sufficiently large,
has a write amplification that is close to optimal for moderate values of Δ𝑤 , e.g., Δ𝑤 = 31 or
63. This indicates that it is indeed possible to achieve near-perfect wear without significantly
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(b) 𝑑 = 50, 𝑏 = 32 and 𝑆𝑓 = 0.1.

Fig. 2. Impact of 𝑑 (left) and 𝑑∗ (right) on the write amplification under uniform random writes for Δ𝑤 =

7, 15, 31 and 63.

increasing the WA factor, answering our initial question affirmatively in case of uniform
random workloads.

In addition the following observations are made:
• We show that the WA factor is fairly insensitive to the choice of the parameter 𝑑∗ (the number
choices made during the move operation).

• We demonstrate that the increase in the WA factor is much more substantial if we make use
of only a single WF (instead of working with the WFI and WFE) or if we select the move
block by picking the block with the least number of valid pages among the 𝑑∗ blocks during
the move operation.

We consider systems with Δ𝑤 = 7, 15, 31 and 63, which corresponds to having a 3, 4, 5 and 6 bit erase
counter, respectively. We present results for 𝑏 = 32 and 𝜌 = 0.9, i.e., 𝑆 𝑓 = 0.1. Similar observations
are made for other 𝑏 and 𝜌 values. In our plots we normalized the write amplification by the write
amplification of the greedy GC algorithm (which is optimal for uniform random writes, but does
not offer any guarantees in terms of the PE fairness).

Figure 2a depicts the impact of 𝑑 and Δ𝑤 on the normalized WA when 𝑑∗ = 5. We also included
results for Δ𝑤 = ∞, which corresponds to using the classic 𝑑-choices GC algorithm. We note that
in all cases the relative increase in the WA compared to the optimal algorithm is below 10% and
even below 5% if we set 𝑑 = 100. We also note that the results for Δ𝑤 ≥ 31 are less than one percent
above the results with Δ𝑤 = ∞. Recall that setting Δ𝑤 = 31 with𝑊𝑚𝑎𝑥 = 2000 implies that the PE
fairness is lower bounded by 1 − Δ𝑤/𝑊𝑚𝑎𝑥 = 0.9845. In other words we can guarantee a very high
PE fairness with only a very limited increase in the WA. For completeness the PE fairness values are
listed in Table 2. Note that even the classic 𝑑-choices GC algorithm (which corresponds to setting
Δ𝑤 = ∞) achieves a high PE fairness under uniform random writes, however the PE fairness of the
classic 𝑑-choices GC algorithm drops quickly in the presence of hot and cold data (see Table ??).

In Figure 2b we look at the sensitivity of the WA factor in terms of the parameter 𝑑∗ with 𝑑 = 50
(as larger 𝑑 values perform better). The parameter 𝑑∗ is used during the move operation, where we
selected the block with the most number of valid pages among 𝑑∗ randomly selected pages with
exactly𝑤𝑚𝑖𝑛 erasures. As such larger 𝑑∗ values imply that we are more likely to find a block with
more valid pages as a move block. The results indicate that increasing 𝑑∗ reduces the WA, however
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𝑑 Δ𝑤 = 7 Δ𝑤 = 15 Δ𝑤 = 31 Δ𝑤 = 63 Δ𝑤 = ∞
10 0.9979 0.9955 0.9907 0.9821 0.9680
20 0.9978 0.9954 0.9904 0.9818 0.9695
50 0.9978 0.9953 0.9903 0.9817 0.9707
100 0.9978 0.9953 0.9903 0.9817 0.9714
bound 0.9965 0.9925 0.9845 0.9685 0

Table 2. Impact of 𝑑 and Δ𝑤 on the PE fairness for 𝑑∗ = 5, 𝑏 = 32 and 𝑆𝑓 = 0.1 under uniform random writes
with𝑊𝑚𝑎𝑥 = 2000.

w
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Fig. 3. Impact of changing some of the design choices in our algorithm on the write amplification under
uniform random writes for 𝑑 = 50, 𝑑∗ = 5, 𝑏 = 32 and 𝑆𝑓 = 0.1.

the reduction is much more limited compared to the impact of 𝑑 and setting 𝑑∗ as low as 5 already
gives results that are quite close to much larger 𝑑∗ values, e.g., 𝑑∗ = 50. This is especially true for
larger Δ𝑤 values.
We end this section by looking at some of the algorithm design choices. More specifically we

look at the setting where the move block is selected as the block with the least number of valid
pages instead of the most number of valid pages and at the setting where we use a single as opposed
to the WFI/WFE write frontiers (see Section 4.2 for details). We note that selecting the move block
based on the least number of valid pages increases the WA, which is not unexpected given our
earlier observation that increasing 𝑑∗ lowered the WA. The impact of this design choice however
lowers as Δ𝑤 increases since fewer move operations are performed with increasing Δ𝑤 . When
replacing the WFI/WFE write frontiers by the single write frontier we see a more pronounced
increase in the WA. Thus contrary to the classic 𝑑-choices GC the write amplification is no longer
the same for the WFI/WFE write frontiers and the single write frontier under uniform random
writes. We do note that the difference is again very limited for larger Δ𝑤 values. In the Section 6
we consider trace based workloads in which case using a double write frontier is key to achieve a
low write amplification.

5 MEAN FIELD DETAILS
In this section we provide some of the fine details that yield the drift equations in (3), (5) and (6).
The mean field model observes the system whenever a call to the GC algorithm is made. As stated
before, the system state at such points in time is represented by the fractions𝑚𝑖,𝑤 , for 𝑖 = 0, . . . , 𝑏
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14 B. Van Houdt

and 𝑤 = 𝑤𝑚𝑖𝑛, . . . ,𝑤𝑚𝑎𝑥 and the state ( 𝑗∗,𝑤∗) ∈ {1, . . . , 𝑏} × {𝑤𝑚𝑖𝑛 + 1, . . . ,𝑤𝑚𝑎𝑥 } of the WFI,
where 𝑗∗ is the number of valid pages on the WFI and𝑤∗ the number of erasures performed so far
on the WFI. Note that the WFI plays the role of the resource in the mean field framework presented
in [3]. The drift

𝑓
(𝑛𝑜𝑚𝑜𝑣𝑒 )
𝑖,𝑤

( ®𝑚) =
𝑏∑︁

𝑗∗=1

𝑤𝑚𝑎𝑥∑︁
𝑤∗=𝑤𝑚𝑖𝑛+1

𝜋 𝑗∗,𝑤∗ ( ®𝑚) 𝑓 (𝑛𝑜𝑚𝑜𝑣𝑒 )
𝑖,𝑤

( ®𝑚, 𝑗∗,𝑤∗), (10)

where 𝑓 (𝑛𝑜𝑚𝑜𝑣𝑒 )
𝑖,𝑤

( ®𝑚, 𝑗∗,𝑤∗) is the drift conditioned on the state of the WFI and 𝜋 𝑗∗,𝑤∗ ( ®𝑚) are the
steady state probabilities of the WFI given that the occupancy vector equals ®𝑚.

As explained below the conditional drift is given by

𝑓
(𝑛𝑜𝑚𝑜𝑣𝑒 )
𝑖,𝑤

( ®𝑚, 𝑗∗,𝑤∗) = (𝑖 + 1)𝑚𝑖+1,𝑤 − 𝑖𝑚𝑖,𝑤

𝑏 (1 − 𝑆 𝑓 )

𝑏∑︁
ℓ=𝑗∗

𝑏𝑝𝑏−ℓ ( ®𝑚) − 𝑝𝑖,𝑤 ( ®𝑚)

+ 1[𝑖 = 𝑏,𝑤 > 𝑤𝑚𝑖𝑛]
𝑏∑︁

ℓ=𝑗∗
𝑝𝑏−ℓ,𝑤−1 ( ®𝑚) + 1[𝑖 = 𝑏,𝑤∗ = 𝑤]

𝑗∗−1∑︁
ℓ=0

𝑝𝑏−ℓ ( ®𝑚). (11)

The first two terms are identical to the first two terms in (3), except for the sum. Given that the WFI
contains 𝑗∗ valid pages,

∑𝑏
ℓ=𝑗∗ 𝑝𝑏−ℓ ( ®𝑚) is the probability that the valid pages of the victim can be

copied to the WFI and in such case we have a new WFE that can support 𝑏 host writes. The third
term can be understood by noting that

∑𝑏
ℓ=𝑗∗ 𝑝𝑏−ℓ,𝑤−1 ( ®𝑚) is the probability that a victim block with

𝑤 − 1 erasures is selected that becomes the new WFE. This block will be erased and filled with
host writes, creating a new block with𝑤 erasures and 𝑏 valid pages. Finally,

∑𝑗∗−1
ℓ=0 𝑝𝑏−ℓ ( ®𝑚) is the

probability that the victim block becomes the new WFI and we get a new block with𝑤∗ erasures
and 𝑏 valid pages, being the WFI.

To obtain (3) from (10) we need to argue that

𝑏∑︁
𝑗=1

𝑝𝑏− 𝑗 ( ®𝑚) 𝑗 =
𝑏∑︁

𝑗∗=1

𝑤𝑚𝑎𝑥∑︁
𝑤∗=𝑤𝑚𝑖𝑛+1

𝜋 𝑗∗,𝑤∗ ( ®𝑚)
𝑏∑︁

ℓ=𝑗∗
𝑏𝑝𝑏−ℓ ( ®𝑚) (12)

and
𝑏∑︁
ℓ=0

𝑝ℓ,𝑤−1 ( ®𝑚) =
𝑏∑︁

𝑗∗=1

𝑤𝑚𝑎𝑥∑︁
𝑤∗=𝑤𝑚𝑖𝑛+1

𝜋 𝑗∗,𝑤∗ ( ®𝑚)
𝑏∑︁

ℓ=𝑗∗
𝑝𝑏−ℓ,𝑤−1 ( ®𝑚) +

𝑏∑︁
𝑗∗=1

𝜋 𝑗∗,𝑤 ( ®𝑚)
𝑗∗−1∑︁
ℓ=0

𝑝𝑏−ℓ ( ®𝑚). (13)

We first look at the probabilities 𝜋 𝑗∗,𝑤∗ ( ®𝑚). These are the steady state probabilities of the WFI
and the state of the WFI evolves according to the Markov chain with with the following size 𝑏Δ𝑤

transition probability matrix (see Figure 4 for an illustration):

𝐾( 𝑗∗,𝑤∗ ),( 𝑗+,𝑤+ ) ( ®𝑚) =


𝑝 𝑗+− 𝑗∗ ( ®𝑚) 𝑗+ > 𝑗∗,𝑤+ = 𝑤∗,

𝑝0 ( ®𝑚) + 𝑝𝑏,𝑤+−1 ( ®𝑚) 𝑗+ = 𝑗∗,𝑤+ = 𝑤∗,
𝑝𝑏,𝑤+−1 ( ®𝑚) 𝑗+ = 𝑗∗,𝑤+ ≠ 𝑤∗,

𝑝𝑏− 𝑗∗+𝑗+,𝑤+−1 ( ®𝑚) 𝑗+ < 𝑗∗,
0 elsewhere.

(14)

Here 𝑝 𝑗+− 𝑗∗ ( ®𝑚) is the probability that the number of valid pages increases from 𝑗∗ to 𝑗+ and the
WFI remains the same, hence 𝑤+ = 𝑤∗. With probability 𝑝𝑏− 𝑗∗+𝑗+,𝑤+−1 ( ®𝑚) the WFI becomes full
and the victim is erased and becomes the new WFI with 𝑗+ valid pages.
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1, 1 2, 1 3, 1 4, 1

1, 2 2, 2 3, 2 4, 2

1, 3 2, 3 3, 3 4, 3

𝑝0 ( ®𝑚) + 𝑝4,1 ( ®𝑚)

𝑝1 ( ®𝑚)

𝑝2 ( ®𝑚)

𝑝4,2 ( ®𝑚)

𝑝3,1 ( ®𝑚)

𝑝4,0 ( ®𝑚)

𝑝3,2 ( ®𝑚)

𝑝3,0 ( ®𝑚)

Fig. 4. Illustration of the transition probabilities of the WFI from state ( 𝑗∗,𝑤∗) = (2, 2) for 𝑏 = 4, Δ = 3 and
𝑤𝑚𝑖𝑛 = 0.

If we only focus on the evolution of the number of valid pages on the WFI, we obtain a Markov
chain with the following transition probability matrix:

�̃� 𝑗∗, 𝑗+ ( ®𝑚) =


𝑝 𝑗+− 𝑗∗ ( ®𝑚) 𝑗+ > 𝑗∗

𝑝𝑏− 𝑗∗+𝑗+ ( ®𝑚) 𝑗+ < 𝑗∗,
𝑝0 ( ®𝑚) + 𝑝𝑏 ( ®𝑚) 𝑗+ = 𝑗∗

(15)

which is a circulant matrix. Therefore its steady state probabilities equal 1/𝑏 and we find that
𝑤𝑚𝑎𝑥∑︁

𝑤∗=𝑤𝑚𝑖𝑛+1
𝜋 𝑗∗,𝑤∗ ( ®𝑚) = 1/𝑏, (16)

for all 𝑗∗, meaning the number of valid pages on the WFI follows a uniform distribution. Using (16)
we immediately find that (12) holds and (13) simplifies to showing

𝑏∑︁
ℓ=1

(1 − ℓ

𝑏
)𝑝𝑏−ℓ,𝑤−1 ( ®𝑚) =

𝑏∑︁
𝑗∗=1

𝜋 𝑗∗,𝑤 ( ®𝑚)
𝑗∗−1∑︁
ℓ=0

𝑝𝑏−ℓ ( ®𝑚). (17)

By summing the balance equations of 𝐾 ( ®𝑚) using (14), we have
𝑏∑︁

𝑗+=1
𝜋 𝑗+,𝑤+ ( ®𝑚) =

𝑏∑︁
𝑗+=1

𝑗+∑︁
𝑗∗=1

𝜋 𝑗∗,𝑤+ ( ®𝑚)𝑝 𝑗+− 𝑗∗ ( ®𝑚) +
𝑏∑︁

𝑗+=1

𝑏∑︁
𝑗∗=𝑗+

𝑤𝑚𝑎𝑥∑︁
𝑤∗=𝑤𝑚𝑖𝑛+1

𝜋 𝑗∗,𝑤∗ ( ®𝑚)𝑝𝑏− 𝑗∗+𝑗+,𝑤+−1 ( ®𝑚)

=

𝑏∑︁
𝑗∗=1

𝜋 𝑗∗,𝑤+ ( ®𝑚)
𝑏− 𝑗∗∑︁
ℓ=0

𝑝ℓ ( ®𝑚) +
𝑏∑︁

𝑗+=1

𝑏− 𝑗+∑︁
ℓ=0

1
𝑏
𝑝𝑏−ℓ,𝑤+−1 ( ®𝑚)

=

𝑏∑︁
𝑗∗=1

𝜋 𝑗∗,𝑤+ ( ®𝑚)
𝑏− 𝑗∗∑︁
ℓ=0

𝑝ℓ ( ®𝑚) +
𝑏−1∑︁
ℓ=0

(1 − ℓ

𝑏
)𝑝𝑏−ℓ,𝑤+−1 ( ®𝑚),

where we used (16). (17) now follows as
∑𝑏

ℓ=0 𝑝ℓ ( ®𝑚) = 1.
We end this section by looking at the drifts 𝑓 (𝑚𝑜𝑣𝑒,1)

𝑖,𝑤
( ®𝑚) and 𝑓 (𝑚𝑜𝑣𝑒,2)

𝑖,𝑤
( ®𝑚). These drifts are only

affected by the probabilities 𝜋 𝑗∗,𝑤∗ ( ®𝑚) through the probability 𝑝𝑚𝑜𝑣𝑒 ( ®𝑚) that a move operation
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page page page read page write total page
trace reads writes footprint (GB) footprint (GB) footprint (GB)
w33 1082234 37993401 0.8038 11.1661 11.7080
w76 1354159 11665083 1.7712 7.9410 9.1567
w95 7999488 7628304 5.8055 3.1197 8.3469
prxy0 806528 21330164 0.3015 0.7067 0.8782
rsrch0 364955 2888684 0.0793 0.2894 0.3574
online 1488693 4211806 0.5244 0.2638 0.7508
webmail 1413830 6381985 1.2051 0.8353 1.8641

Table 3. Workload characteristics after preprocessing.

takes place as

𝑝𝑚𝑜𝑣𝑒 ( ®𝑚) =
𝑏∑︁

𝑗∗=1

𝑤𝑚𝑎𝑥∑︁
𝑤∗=𝑤𝑚𝑖𝑛+1

𝜋 𝑗∗,𝑤∗ ( ®𝑚)
𝑏∑︁

ℓ=𝑗∗
𝑝𝑏−ℓ,𝑤𝑚𝑎𝑥−1 ( ®𝑚),

which simplifies to (4) due to (16).

6 TRACE-BASEDWORKLOADS
In this section we study the performance of the algorithm presented in Section 3 when subject to
trace-based workloads (instead of uniform random writes). The main insight can be summarized as
follows:

• The algorithm presented in Section 3 has a WA factor close to the WA factor of the classic
𝑑-choices algorithm, while its PE fairness is much higher and guaranteed to be close to one.
This implies that the SSD endurance increases sharply compared to the classic 𝑑-choices
GC algorithm (more than doubling in a number of cases). This shows that we can indeed
guarantee near-perfect wear leveling without paying a high cost in terms of the WA factor,
answering our initial question affirmatively for trace-based workloads.

In addition we further demonstrate that
• The impact of 𝑑∗, the number of blocks selected during the move operation, is very minor and
that selecting a block with the most number of valid pages in a move operation is superior to
selecting a block with the least number of valid pages.

• Without the move operation we can still achieve a near-perfect wear, but at the expense of
a major increase in the WA factor. In other words the move operation is key to keep the
growth of the WA factor limited.

• Replacing the WFI/WFE by a single WF in case of trace-based workloads results in a very
high WA factor, which deteriorates the system performance. This confirms the know fact
that separating hot and cold data (either implicitly or explicitly) is important for workloads
with hot and cold data.

Note that these conclusions are very much in agreement with the conclusions drawn from the
mean field model experiments in Section 4.4 (which was restricted to uniform random writes).
In our trace-based simulation experiments we make use of two (prxy0 and rsrch0) MSR block

traces [1, 17], two (online and webmail) SyLab block traces [2, 25] and three (w33, w76 and w95)
more recent CloudPhysics block traces [27]. We first preprocessed the above traces by aligning
the offset of each request to a multiple of 4 KB. Requests with sizes above 4 KB were subsequently
split into several (sequential) requests such that all requests have a size of at most 4 KB. The SSD
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Fig. 5. WA factor and Endurance for 𝑑 = 10, 20, 50, 100, 𝑑∗ = 5, 𝑏 = 64, 𝑆𝑓 = 0.1 and𝑊𝑚𝑎𝑥 = 2000.

used in the trace-driven simulation experiments is composed of𝑈 = ⌊𝑥/𝑏⌋ logical blocks, where 𝑥
equals the number of different logical pages accessed by the trace. The number of physical blocks
𝑁 = 𝑈 /(1 − 𝑆 𝑓 ). The pages are initially placed on the first𝑈 physical blocks, while the remaining
𝑁 −𝑈 blocks contain 𝑏 pages in the erase state. To make the simulation runs sufficiently large we
adopted the replay method used in prior SSD work [14, 16]. Some characteristics of the workloads
considered are listed in Table 3.

Main insight: To demonstrate that the algorithm proposed in Section 3 can achieve near-perfect
wear leveling at a low cost in terms of the WA factor, we compare the WA factor, PE fairness and
Endurance of this algorithm for Δ𝑤 = 63 with the 𝑑-choices algorithm (which corresponds to
setting Δ𝑤 = ∞) for each of the workloads considered. We set 𝑏 = 64, 𝑆 𝑓 = 0.1, 𝑑∗ = 5 and consider
four different choices of 𝑑 . Similar results were also obtained for other parameter settings. The
maximum number of erase cycles𝑊𝑚𝑎𝑥 is set to 2000, such that for Δ𝑤 = 63 the PE fairness is
guaranteed to exceed 1 − 63/2000 = 0.9685. Figure 5a presents the results for the WA factor. The
light gray bars show the WA factor of the 𝑑-choices GC algorithm, while the dark gray bars indicate
the increase in the WA factor of the algorithm when Δ𝑤 = 63. It shows that for most of these
workloads the increase in the WA factor is indeed limited. Note that in some cases setting 𝑑 = 100
yields a higher WA factor than setting 𝑑 = 50 which is in agreement with the fact that the greedy
GC algorithm does not minimize the WA factor for non-uniform writes.

The question is now whether this guaranteed near-perfect wear yields a strong improvement for
the life span of the drive. Figure 5b confirms that this is indeed the case. It shows a large increase
in terms of the Endurance (often doubling for larger 𝑑 values), which represents the number of full
drive writes that can be supported before any block is erased𝑊𝑚𝑎𝑥 times. This huge improvement
can be understood by looking at Table 4 which indicates that the classic 𝑑-choices GC algorithm
causes a very unequal wear that becomes more pronounced as 𝑑 increases. Note that for the classic
𝑑-choices GC algorithm there is a trade-off between the WA factor and the PE fairness: the 𝑑 value
that minimizes the WA factor often yields a poor PE fairness.

We now look at the influence of some of the other parameters. We present results for the prxy0
trace (similar observations are made for other traces).
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trace Δ𝑤 𝑑 = 10 𝑑 = 20 𝑑 = 50 𝑑 = 100
w33 63 0.9836 0.9836 0.9835 0.9836

∞ 0.8022 0.7917 0.7873 0.7889
w76 63 0.9836 0.9833 0.9832 0.9833

∞ 0.7890 0.7347 0.6937 0.6696
w95 63 0.9841 0.9828 0.9813 0.9817

∞ 0.6104 0.4329 0.3561 0.3188
prxy0 63 0.9839 0.9836 0.9834 0.9835

∞ 0.6836 0.5125 0.4773 0.4036
rsrch0 63 0.9836 0.9836 0.9835 0.9837

∞ 0.7301 0.6348 0.5961 0.5678
online 63 0.9839 0.9829 0.9826 0.9827

∞ 0.6404 0.3851 0.3244 0.3105
webmail 63 0.9839 0.9826 0.9820 0.9822

∞ 0.6692 0.4037 0.2993 0.2446
Table 4. The PE fairness for 𝑑∗ = 5, 𝑏 = 64 and 𝑆𝑓 = 0.1 with𝑊𝑚𝑎𝑥 = 2000 for various 𝑑 and Δ𝑤 .
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Fig. 6. Impact of 𝑑 and Δ𝑤 for 𝑑∗ = 5, 𝑏 = 64 and 𝜌 = 0.9 for the prxy0 trace with𝑊𝑚𝑎𝑥 = 2000.

Influence of Δ𝑤 : Figure 6a depicts the impact of Δ𝑤 on the write amplification for the prxy0
trace with 𝑏 = 64 and 𝜌 = 0.9. The main observation is that smaller Δ𝑤 values yield a higher WA
factor (as expected) and the increase becomes more significant for small Δ𝑤 . We therefore see a
trade-off in the choice of Δ𝑤 : smaller Δ𝑤 improve the PE fairness, but lower the WA. This implies
that for the Endurance there exists an optimal Δ𝑤 value as shown in Figure 6b. It also shows that a
near-perfect wear suffices to get a high endurance instead of striving for perfect wear leveling.

Low utilization: We now repeat the previous experiment using the same parameters, except that
we lower 𝜌 from 0.9 to 0.3. This reflects a setting where the SSD has a low utilization. In such a
setting the WA factor should be close to one, but the PE fairness may still be well below one when
some of the data on the SSD is cold or read only data, where larger fractions of read only data
result in lower PE fairness numbers. In Figure 7a we see that the WA factor is indeed close to 1,
especially for Δ𝑤 = 63 and Δ𝑤 = ∞. Looking at Figure 7b we see that there is a huge difference
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Fig. 7. Impact of 𝑑 and Δ𝑤 for 𝑑∗ = 5, 𝑏 = 64 and 𝜌 = 0.3 for the prxy0 trace with𝑊𝑚𝑎𝑥 = 2000.
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Fig. 8. Impact of 𝑑∗ and Δ𝑤 on the WA factor for 𝑑 = 50, 𝑏 = 64 and 𝑆𝑓 = 0.1 for the prxy0 trace.

in the endurance between Δ𝑤 = 63 and Δ𝑤 = ∞. The former has an endurance close to 2000 full
drive writes, as the PE fairness and the WA factor are both close to one, while with Δ𝑤 = ∞ the PE
fairness varies between 0.61 and 0.68. This experiment therefore shows that the proposed algorithm
is also very effective in low utilization scenarios.

Influence of 𝑑∗: The impact of 𝑑∗, the number of choices used to select the move block among the
blocks with𝑤𝑚𝑖𝑛 erasures, is illustrated in Figure 8 for the prxy0 trace. In addition this figure also
indicates what happens if the block with the least number of valid pages among the 𝑑∗ selected
blocks is picked as the move block. As in the uniform random writes case the impact of 𝑑∗ is limited
and larger 𝑑∗ values result in a very small decrease in the WA (close to zero for Δ𝑤 = 63). In fact
the impact of 𝑑∗ is very minor as most of the blocks with𝑤𝑚𝑖𝑛 erasures contain mostly cold data
and therefore a small 𝑑∗ yields a high probability of selecting a block with cold data. We further
note that selecting the block with the least number of valid pages as the move block increases the
WA factor, but the increase is quite limited.
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Fig. 9. WA factor for 𝑑 = 50, 𝑑∗ = 5, 𝑏 = 64, Δ𝑤 = 63 and 𝑆𝑓 = 0.1.

Importance of move operation: In Figure 9a we present results for all the workloads in Table 3 for
Δ𝑤 = 63 and study the impact of disabling the move operation in Case (1B) of the algorithm. It is
immediately apparent that disabling the move operation results in a very poor WA. This can be
understood by noting that without the move operation, the new WFE that is created by the GC
algorithm may be a block that experienced𝑤𝑚𝑎𝑥 writes. The WFE is typically filled with lots of hot
data that is quickly invalidated, creating a block with a low number of valid pages. However if the
erase counter of the WFE equals𝑤𝑚𝑎𝑥 , it cannot be selected by the GC algorithm. Thus without
the move operation, a lot of the hot invalidated pages get stuck on the blocks with exactly𝑤𝑚𝑎𝑥

erasures, which has a detrimental effect on the WA. Note that the move operation itself also causes
some additional internal writes, but their contribution to the total number of internal writes is
limited. More specifically for the experiment in Figure 9a the percentage of internal writes caused
by a move operation on the total number of internal writes equals 1.00%, 2.31%, 6.26%, 2.12%, 5.15%
and 5.11% for the seven traces considered, where the traces with a larger fraction of read only data
tend to require more move operations.

Importance of data separation: In Figure 9b we look at the impact of having a single write frontier
instead of the WFI/WFE write frontiers for our algorithm for each of the traces in Table 3 for
Δ𝑤 = 63. As anticipated the write amplification surges up significantly for all the traces (except for
the online trace), showing the importance of separating hot and cold data (implicitly or explicitly).
This increase is in line with earlier observations, e.g. [19, Figure 9].

7 CONCLUSIONS
In this paper we addressed the question whether near-perfect wear leveling is possible at low costs
in terms of the write amplification factor. We answered this question in the affirmative by presenting
a simple randomized algorithm that combines wear leveling with garbage collection. This algorithm
guarantees that the wear is nearly perfectly balanced at all times, that is, the number of erase
cycles of any two blocks is guaranteed to differ by at most Δ𝑤 (a parameter of the algorithm), while
causing a low increase in the write amplification. This was demonstrated mathematically using a
mean field model in case of uniform random writes and using trace-driven simulation experiments.
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