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Abstract

We analyze the impact of lead time correlation on the inventory distribu-

tion, assuming a periodic review base-stock policy. We present an efficient

method to compute the shortfall distribution for any Markovian lead time

process, and we provide structural results when lead times are character-

ized by a 2-state Markov-modulated process. The latter reveals how lead

time correlation increases the inventory variance and enables a closed form

for the asymptotic behavior of the shortfall’s variance in case the two pos-

sible lead time values are sufficiently different. We also establish upper

and lower bounds on the inventory variance, which hold for any general

time-homogeneous lead time process. Our results are complemented by a

numerical experiment that indicates how commonly used approximations

of the shortfall distribution mis-specify base-stock levels in the presence of

lead time correlation. Not only does the inventory distribution increase in

variance as the lead time correlation increases, it also becomes multi-modal.
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1. Introduction

The base-stock policy is a well known inventory policy, shown to be op-

timal when there is no fixed ordering cost and both holding and shortage

costs are proportional to the volume of on-hand inventory or shortage (see

e.g. Scarf, 1959, Chapter 13). The optimal base-stock level is commonly

determined via the demand over the lead time, which is typically approx-

imated using a uni-modal (e.g., normal or negative binomial) distribution.

This approach has been validated to stochastic lead times, as long as there

are no order crossovers (see e.g. Hadley and Whitin, 1963; Kaplan, 1970).

Order crossover occurs whenever replenishment orders do not arrive the

sequence in which they are placed. There are several reasons why order

crossovers exist: the use of (several) global suppliers (simultaneously), adop-

tion of multiple and more variable transportation modes, the increased fre-

quency of orders (driven by just-in-time inventory practices), etc. (Robinson

et al., 2001; Srinivasan et al., 2011; Disney et al., 2016).

If such order crossover occurs, traditional inventory analysis overstates

expected shortages and thus setting the base-stock levels based on the lead-

time demand distribution will overestimate base-stock levels and lead to

excess inventory. Instead, one should rely on the distribution of the shortfall,

defined as the outstanding inventory (or inventory on order) at the start

of a period (Robinson et al., 2001). The shortfall distribution determines

the inventory distribution, which has a smaller variance than the lead time

demand in case of independent and identically distributed (i.i.d.) lead times

(Zalkind, 1976).

In this paper we focus on the impact of correlation in stochastic lead

times, in combination with order crossovers. When lead times are correlated,

the lead time demand is not impacted, but the shortfall distribution and

hence the inventory distribution and optimal base-stock levels are.

1.1. Background and Motivation

Lead time correlation is only rarely studied in the literature, despite its

prevalence in many real life supply chains. In transportation for instance,

consecutive lead times may be positively correlated: if it takes long to de-

liver an order (for instance due to congestion), it is likely that the subsequent

order will also face a long lead time. Negative correlation may occur where

multiple modes of transportation or multiple suppliers are interchangeably
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Figure 1: The lag-1, 2, 3, 4 correlations in consecutive lead times for six inter-port shipping
routes (the abbreviations represent the port codes).

used with different lead times (e.g., a fast transportation mode or nearshore

supplier versus a slow transportation mode or offshore supplier). We have

analyzed logistics data of 65,536 inter-port shipments of global forwarders.

These data reveal that consecutive inter-port lead times are always corre-

lated, with correlation values that can be either positive or negative. Fig-

ure 1 reports the lag-1, 2, 3, 4 correlations of six of these routes (the abbre-

viations represent the port codes): the two routes with the most negative

correlation (XMN-SEA, SZG-ATL), the two routes with the highest positive

correlation (SHA-ORD, SHA-DFW) and the two routes with the least corre-

lation among all routes (HKG-DFW, YAN-ORF). This dataset reveals that

there is always correlation in the lead times, with the positive correlation

generally stronger than the negative. The same dataset was considered in

Disney et al. (2016) to demonstrate the existence of crossovers.

The existence of correlated lead times and order crossovers motivates us

to analyze how such correlation in consecutive lead times impacts the inven-

tory distribution (via its impact on the shortfall distribution) in a single-

item inventory system with stochastic lead times and order crossovers under

a simple periodic review base-stock policy. We acknowledge that in case of

order crossovers, a base-stock policy is no longer optimal (Srinivasan et al.,

2011). However, the base-stock policy is a well-studied policy with many

familiar properties. Moreover, base-stock control policies are often studied

in literature as they provide a benchmark on how much inventory is needed

to provide a certain service level. In this sense it sharpens the focus on the
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higher-level business issue of inventory/service trade-off without getting into

operational issues such as order sizes. This makes it an attractive model to

analyze the effect of lead times on system performance.

Our approach exists in analyzing the shortfall distribution through the

number of outstanding orders, as the latter is the only component of the

shortfall distribution which depends on the correlation in lead times. We

study how correlation in the lead time process impacts the shortfall dis-

tribution (and thus the optimal base-stock policy and associated costs) for

a given set of lead times and a given steady state distribution of the lead

time process. We know that for a given lead time distribution, the lead

time demand is independent of the correlation in lead times. For general

time-homogeneous lead time processes without crossovers, the shortfall dis-

tribution coincides with the lead time demand distribution and is thus also

independent of the correlation in the lead time process. However, as soon

as crossovers are prevalent, the shortfall distribution and its variance are

strongly influenced by the correlation in consecutive lead times. To the best

of our knowledge, we are not aware of any paper that provides structural

insights on the impact of lead time correlation on the inventory system in

the presence of order crossovers.

1.2. Related literature

A majority of the inventory literature has circumvented the difficulty

due to order crossover either by simply ignoring it (e.g., stating that the

probability of order crossover is small), or by constructing models so that

crossovers are not possible or provides no benefit. However, recent litera-

ture has shown that order crossovers are prevalent in many real life supply

chains, and ignoring order crossover has significant inventory cost implica-

tions. Even better, supply chain managers could exploit order crossover to

reduce safety stocks, which means that order crossover is not necessarily

baneful, but actually helpful in reducing inventory risk (Hayya et al., 2008).

Robinson et al. (2001) examine the effects of order crossover in a peri-

odic review base-stock model. They show that optimizing base-stock levels

based on the lead time demand distribution – rather than the shortfall –

can lead to significantly higher inventory cost, even if the probability of or-

der crossover is small. They present an iterative algorithm for computing

the distribution of the number of orders outstanding, and formulae for the
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inventory shortfall distribution. As the shortfall not only has a smaller vari-

ance than the lead time demand distribution (this result was first derived by

Zalkind (1976)), but also a different shape, they propose to use the negative

binomial distribution to approximate the shortfall, rather than the common

practice of approximating the distribution as normal. In a follow-up article,

Bradley et al. (2005) develop an upper bound on the variance of the number

of orders outstanding, which facilitates the computation of both the normal

and negative binomial approximations. They show that the variance of the

number of orders outstanding is bounded above by the standard deviation

of lead time divided by
√

3. Wensing and Kuhn (2015) extend the focus

towards periodic-review base-stock policies with arbitrary review period.

Hayya et al. (2008) introduce the concept of “effective lead time”, de-

fined as the time between the ith order placement and the ith order arrival,

with the index i not tagged to a particular order. For a given lead time

distribution, the occurrence of crossovers leads to an effective lead time dis-

tribution, whose mean is the same as that of the original lead time but

whose variance is less than the original variance. As the effective lead times,

and not the original lead times, determine the inventory distribution, supply

chain managers could exploit order crossover to reduce safety stocks. Bis-

chak et al. (2014) develop an approximation of the effective (reduced) lead

time standard deviation using simulation analysis. They are one of the few

that address correlated lead times (e.g., due to congestion) in their analysis.

Muharremoglu and Yang (2010) provide a numerical method to determine

optimal base-stock levels for a broad class of stochastic (including non-i.i.d.)

lead time processes.

He et al. (1998) examine the impact of crossovers in a continuous review

inventory system with constant demand and stochastic lead times and find

that the optimal order quantity is lower (compared to ignoring it), but the

reorder point may be more or less, depending on the parameters of the

problem. Song and Zipkin (1996) investigate different approximations to

the variance of the shortfall for continuous review inventory policies, which

they model as being normally distributed.

Whereas the majority of the work dealing with order crossover correctly

states that considering order crossover can lead to lower inventory levels and

subsequently lower inventory costs, only few have investigated the optimal

inventory policy for inventory systems with order crossover. Srinivasan et al.
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(2011) show using dynamic programming that, in the presence of order

crossover, the optimal inventory control policy is state-dependent and not

only takes into account the inventory position, but also the age of pending

orders and the probability distribution of their arrivals in the future. Due

to the curse of dimensionality, the optimal policy is intractable for problems

with large state spaces. Disney et al. (2016) find that, when there is order

crossover, the so-called proportional base-stock policy, a linear generalization

of the base-stock policy outperforms the traditional base-stock policy.

There is also a number of papers that discuss order crossovers due to

(deterministic) changes in the lead time, e.g., due to a lead time reduction

program or due to a change of supplier. This leads to expected crossovers,

which can be anticipated upon. Axsäter (2011) deals with the transient

inventory control to anticipate such lead time changes and Gaalman and

Riezebos (2005) and Riezebos and Gaalman (2009) show that the standard

base-stock policies are no longer optimal in case of expected crossovers. Also

Riezebos and Zhu (2015) consider a similar problem. However, such lead-

time changes are not that much related to the problem we consider.

1.3. Our Results and Positioning in the Literature

With the exception of Bischak et al. (2014) and Muharremoglu and Yang

(2010), the literature studying order crossovers assumes i.i.d. lead times. We

contribute to the literature by addressing the following questions:

• How does correlation in lead times impact the inventory distribution

and the optimal base-stock levels?

• How do the current approximations (which assume i.i.d. lead times)

perform in the presence of lead time correlation?

To the best of our knowledge, we are not aware of any paper that provides

structural results on the impact of lead time correlation on the inventory

distribution. That is also the reason why we restrict our analysis to a simple

base-stock policy with i.i.d. demand and no correlation between demand and

lead times. We acknowledge that the current literature on stochastic lead

times does cope with more advanced techniques, such as correlated demand

(Wang and Disney, 2017), correlation between demand and lead time (Boute

et al., 2014) or stochastic lead time reduction (Hayya et al., 2011). However,

none of these consider correlation in lead times. As it is not our ambition to
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include these generalizations, our main benchmark is Robinson et al. (2001),

who study a base-stock policy with order crossovers and i.i.d. lead times.

Our main results can be summarized as follows. First, we present an ef-

ficient numerical method to compute the shortfall distribution through the

distribution of the number of outstanding orders for general Markov modu-

lated lead times. This extends the numerical method presented in Robinson

et al. (2001) for i.i.d. lead times to include correlated lead times. Second,

while this numerical scheme allows fast numerical evaluation, it does not

establish structural results on how the correlation affects the shortfall dis-

tribution. We therefore complement this numerical method with structural

results on the variance of the shortfall distribution. We prove for a 2-state

Markov modulated lead time process that the variance of the shortfall dis-

tribution (and hence of the inventory distribution) grows as a function of

the correlation (more specifically, the lag-1 autocorrelation) and we provide

a closed form of the asymptotic behavior of the variance of the shortfall

in case the two possible lead time values are sufficiently different. Third,

we present for a general time-homogeneous process a tight upper bound on

the variance of the shortfall distribution and a lower bound, of which the

tightness depends on the steady state distribution and state space of the

lead time process. This dependence can be characterized analytically for a

2-state Markov modulated lead time process, which enables a tight lower

bound for a given steady state lead time distribution.

Finally, we present a numerical example which demonstrates that for

strongly correlated lead time processes, the shortfall distribution tends to-

wards the lead time demand distribution, which is multi-modal. As a con-

sequence the (uni-modal) normal and negative binomial approximations are

both no longer good estimators of the shortfall (and inventory) distribution.

When we restrict to a 2-state Markov modulated lead time process we can

analytically derive the convergence of the number of outstanding orders to

the lead time as the correlation tends to 1, which entails the convergence in

distribution of the shortfall to the lead time demand. Through numerical

examples we conjecture that this convergence extends to general Markov

modulated lead times. This result contributes to the existing literature, as

Robinson et al. (2001) note that in the presence of i.i.d. lead times and or-

der crossovers, the lead time demand distribution may be multi-modal, but

the corresponding shortfall distribution is generally not; and as long as the
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inventory parameters are computed using the shortfall, the multi-modality

of lead time demand does not pose a problem and uni-modal (like normal

or negative binomial) approximations may still be accurate. However, we

show that this is no longer valid when lead times are correlated, in which

case the shortfall distribution may also be multi-modal and uni-modal ap-

proximations may be inaccurate.

The remainder of the paper is structured as follows. In the next section

we provide a formulation of the problem. Section 3 is devoted to the study

of the shortfall distribution under general time-homogeneous, Markov mod-

ulated and 2-state Markov modulated lead time process. In Section 4 we

provide structural results to describe the variance of the shortfall, which is

a prime determinant of the inventory-related costs. A numerical experiment

is presented in Section 5 to illustrate our findings.

2. Problem Formulation

Throughout this paper, we use a periodic review model with infinite

horizon, where we always assume to be in steady state. In a period, the

following sequence of events occur: (1) previously placed orders are received

in inventory; (2) the order quantity of the current period is determined; (3)

instant arrival of this order in case the lead time is 0; (4) Uncertain demand

is realized and satisfied from the inventory on hand; and (5) the shortfall

and inventory are calculated, and backlog and holding costs are incurred

based on the end-of-period inventory levels. This is schematically depicted

in Figure 2 and we explain this in more detail below.

We denote the lead time process by {Lt} where the value of Lt represents

the number of periods it takes for an order placed at time t ∈ N to arrive

in inventory. We assume that {Lt} is time-homogeneous with steady state

distribution π and a countable state space S. In our analysis we mostly

specify that {Lt} follows an irreducible, time-homogeneous Markov process

with transition matrix L (in some cases we will assume a general time-

homogeneous process). This means that for every s, s′ ∈ S and t ∈ N we

have P{Lt+1 = s′ | Lt = s} = Ls,s′ . Let π be its steady state distribution,

i.e. a vector s.t. π · L = π, then for any s ∈ S and t ∈ N : P{Lt = s} = πs.

We use the elements of S as indexes; if for example S = {1, 9, 27}, we write:

π =
(
π1 π9 π27

)
. In this notation it is always assumed if S = {s1, . . . , sm}
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Arrival Qt−τ , Lt−τ = τ

Determine Qt

Arrival Qt if Lt = 0

Satisfy Dt

Calculate SFt and It, incur inventory costs

t t+ 1

Figure 2: Schematic Representation of the series of events in one period.

and s1 < s2 < · · · < sm (with possibly m = ∞) that the first row/column

of L and the first element of π correspond to s1 and so on.

We denote the demand process by {Dt}, which we assume to be an

i.i.d. process independent of {Lt}. We denote Qt the order quantity in

period t. We assume a standard base-stock policy, which means that in

period t ∈ N the order quantity Qt = Dt−1. We define the shortfall SFt as

the amount by which the inventory level It is below the base-stock level S

at the end of period t (after satisfying demand), so that It = S − SFt:

SFt := Dt +

∞∑
l=0

Dt−l−1 · δ{Lt−l > l},

with δ{A} = 1 if A is true and 0 otherwise. This quantity represents the

outstanding inventory still on order at the end of the period, plus the current

period’s demand. Under a time-homogeneous lead time process, the shortfall

distribution does not depend on the time t and we simply denote the shortfall

by SF (we use this notation for all variables whose distribution does not

depend on t, e.g. the lead time L). We assume that a per-unit holding cost

h and shortage cost b are levied against the positive (on-hand) and negative

(backordered) parts of the inventory level at the end of each period. With

I = S − SF the end-of-period inventory, we have Var(I) = Var(SF) (which

means that we can use the variance of the inventory level and the variance

of the shortfall interchangeably), and the expected costs per period is then:

E
[
h · I+ + b · I−

]
,
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where we denote f± := (0 ∨ ±f) for any function f : R → R. Whereas

the mean of the shortfall is not influenced by the correlation in lead times

(see Lemma 2), its variance is. Moreover, the variance of the shortfall is a

prime indicator of the expected costs: the higher the variance, the higher

the inventory-related costs. This makes the variance of the shortfall an

interesting object to study, which is the topic of Section 4.

3. Analysis of the shortfall distribution under correlated lead times

To analyze the distribution of the shortfall, we distinguish three cases.

First we consider a general time-homogeneous lead time process, in which

case we show that correlation in lead times only impacts the shortfall dis-

tribution if there are crossovers; in the absence of crossovers, the shortfall is

not impacted by any correlation in lead times (see Section 3.1). Second, for

Markov modulated lead times, we provide an efficient recursive scheme to

compute the shortfall distribution (Theorem 1); this scheme can also take

correlated demand into account. Note that similar schemes exist only for

i.i.d. lead times (not for correlated lead times). Third, in case of a 2-state

lead time process we characterize the distance between the shortfall and the

lead time demand analytically (Proposition 1) and we show that the short-

fall converges (in distribution) to the lead time demand as the lead time

correlation tends to one (Corollary 1). Among others, this means that if the

lead time demand distribution is multi-modal, the shortfall becomes multi-

modal as the lead time correlation increases, and uni-modal approximations

of the shortfall distribution are no longer accurate. This is different from

the case where lead times are i.i.d., where the lead time demand distribu-

tion may be multi-modal, but the shortfall is generally not and uni-modal

approximations of the shortfall work well (Robinson et al., 2001).

3.1. Time-Homogeneous Lead Time Process

Robinson et al. (2001) note that in the presence of order crossovers, the

lead time demand, defined by

LTDt :=

Lt∑
i=0

Dt+i,

cannot be used to approximate the inventory distribution; instead the short-

fall SF = S − I should be used, which is determined by the number of out-

10



standing orders at time t, denoted by Vt =
∑∞

k=0 δ{Lt−k > k}. The shortfall

SF for i.i.d. demand is given by:

SF
d
=

V∑
l=0

Dl,

where
d
= represents equality in distribution. If there are no crossovers, it

can be seen that L
d
= V (Muharremoglu and Tsitsiklis, 2008, Proposition

3.9). This implies that in the absence of order crossovers, the correlation in

the lead time process has no influence on the shortfall, as it does not have

any effect on the lead time demand. In Appendix B we provide an example

of the significance of this observation for Markov modulated lead times.

In what follows we will focus our analysis on the number of outstanding

orders V , as this determines the shortfall distribution SF.

3.2. Markov Modulated Lead Time Process

When the lead time process {Lt} is Markov modulated, we can find an

|S| dimensional Markov transition matrix L, s.t. {Lt} is a Markov process

with transition matrix L and steady state π (π · L = π). The shortfall

distribution in the presence of crossovers can then be computed as follows.

Define for any s ∈ S and natural numbers k ≤ n:

g(s;k|n) := P{Lt−n = s and |{i ∈ {0, . . . , n− 1} | Lt−i > i}| = k},

which is the probability that of the last n orders, exactly k are still outstand-

ing and the order placed n periods ago has lead time s. We can calculate

these values recursively. As a base we have:

∀s ∈ S : g(s;0|0) = πs.

The recursive relation is given in the following Theorem.

Theorem 1. For n < sup(S), k ≤ n+ 1 and s ∈ S we have:

g(s;k|(n+1)) =
∑

sn≤n,sn∈S

πs
πsn

Ls,sng(sn;k|n) +
∑

sn>n,sn∈S

πs
πsn

Ls,sng(sn;(k−1)|n).

Here we use the convention that g(s;k|n) = 0 if k > n or k < 0.
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Proof. See Appendix C. Here we also introduce a method for dealing with

non-i.i.d. demand.

Using these values we can determine g(k|n) :=
∑

s∈S g(s;k|n), which is the

probability that of the last n orders, there are exactly k still outstanding.

Let gk := P{V = k} denote the probability of having exactly k outstanding

orders. In case S is finite, this equals g(k|m) with m = max(S) and otherwise

gk = limm→∞ g(k|m).

Remark: Robinson et al. (2001) also provides a recursive scheme to compute

the values of g(k|m) and gk, however the recursion is much simpler for i.i.d.

lead times as one no longer needs to keep track of the exact values of the

lead time process; and Ls,sn = πsn for all values of s, sn, which allows a

simple recursion to directly obtain the values g(k|n) (see Eq. (2) in Robinson

et al. (2001)).

Once we have obtained the values of gk we find the shortfall distribution:

SF
d
=
∞∑
k=0

gkD
(k+1),

where D(k+1) is the k + 1-fold convolution of D, which can be easily com-

puted. If the maximum lead time is m = sup(S) < ∞ the complexity of

finding the distribution of the number of outstanding orders is O(|S|2m2),

which is bounded by O(m4).

3.3. Two-state Markov Modulated Lead Time Process

In addition to the above numerical procedure to determine the shortfall

distribution in the presence of lead time correlation and order crossovers, we

can find structural results how the lead time correlation impacts the shortfall

distribution when we restrict to a 2-state Markov modulated lead time. We

acknowledge that a 2-state lead time process may be an oversimplification of

many practical settings; nevertheless it allows to obtain structural insights in

the impact of lead time correlation, which we can then numerically validate

to more general lead time processes. For this purpose we first provide an

exact expression of the distance between the number of outstanding orders,

Vt, and the lead time, Lt, as a function of the correlation in the lead time.

We denote the lag-n correlation of the lead time process {Lt} by:

`n := Corr(Lt, Lt+n),
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and for simplicity we write ` for `1. For general lead time processes, the

shortfall distribution depends on all the values (`n)n. However, for a 2-state

Markov modulated lead time process, we can show that `n = `n, so that we

only need to consider `. Moreover, we can find a simple expression of L in

function of this correlation `, which will prove to be useful in our further

analysis of the shortfall.

Lemma 1. If the lead time process {Lt} is given by an irreducible 2-state

Markov process with state space {0,m}, steady state (α, 1− α) and demand

is i.i.d., it follows that:

` = Det(L),

which entails for arbitrary n ∈ N:

`n = `n.

Further, ` is independent of m and we can write the n’th power of the tran-

sition matrix as:

Ln =

(
(1− α)`n + α (1− α)(1− `n)

α(1− `n) α`n + (1− α)

)
,

 α
α−1 ≤ ` if α ∈ [0, 12 ],

α−1
α ≤ ` if α ∈ [12 , 1].

Proof. See Appendix D.

Remark: One can easily generalize Lemma 1 to include a state space

{m′,m}.
Using Lemma 1 we can express the distance of the number of outstanding

orders to the lead time process, E[|Vt − Lt|], as a deterministic function of

the state space, steady state and the correlation ` in case of a 2-state Markov

modulated lead time process.

Proposition 1. Let {Lt} be a 2-state Markov chain with state space S =

{0,m} for m ∈ N0 and steady state π = (α, 1−α) for α ∈ [0, 1] and suppose

we have i.i.d. demand. Then,

E[|Vt − Lt|] =
2(α− 1)α (`m − `m+m− 1)

`− 1
.

Proof. See Appendix E.
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Figure 3: Convergence of E[|Vt −Lt|] to zero as `→ 1 for steady state π = (1/2 1/2) and
state space S = {0,m} for different values of m.

By applying l’Hôpital’s rule, the right hand side of the above Proposition

converges to zero when ` → 1. This means that the distribution of the

number of outstanding orders converges to the lead time distribution as

the lead time correlation approaches 1. Figure 3 illustrates the convergence

speed of E[|Vt − Lt|] for α = 1/2,m = 1, 2, 3, 4, 5. As m increases, the

convergence is slower.

One can generalize the result in Proposition 1 to the case where lead

times have a state space S = {m′,m}, but then one should compare Vt+m′

and Lt instead of Vt and Lt. Of course, as the distribution of Vt and Lt is

independent of t, convergence in distribution of V to L still holds.

As the lead time demand and shortfall distribution are given by
∑L

l=0Dl

and
∑V

l=0Dl respectively, Proposition 1 also gives an indication on the con-

vergence of the shortfall distribution to the lead time demand distribution.

Corollary 1. Under the same conditions as in Proposition 1 we have: the

shortfall converges in distribution to the lead time demand as ` → 1, more

specifically: Let SF(n) denote the shortfall distribution in case the correlation

is `(n), then for any sequence {`(n)} in [0, 1] s.t. `(n) → 1, we have SF(n) →d

LTD with →d convergence in distribution.

Proof. See Appendix F.

Based on numerical analysis, we conjecture that this convergence re-

mains valid for general Markov modulated lead times (see Section 5).
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4. Properties of the Variance of the Shortfall under Correlated

Lead Times

We now provide structural results how lead time correlation impacts the

most important property of the shortfall distribution, namely its variance.

4.1. Time-Homogeneous Lead Time Process

Further on, whenever convenient, we denote for a random variable X

its variance by σ2X and its mean by µX . Denote for a set A and a number

x : IA(x) the indicator function which equals one if x ∈ A and zero otherwise.

For a general time-homogeneous lead time process, we find that the mean

of the shortfall does not depend on the correlation in the lead time process:

Lemma 2. For a time-homogeneous demand and lead time process s.t. µL <

∞ and
∑∞

n=1 E[D · I{V≥n}] <∞, we have µSF = µD · (µL + 1).

Proof. This result follows by applying Wald’s identity and the fact that

µV = µL (which was first shown in Zalkind (1978)).

Remark: This expression for µSF also appears in e.g. Disney et al. (2016)

and Robinson et al. (2001) for the case of i.i.d. lead times. We see that it

still holds for correlated lead times.

We now inspect how the variance of the shortfall behaves with respect

to the correlation in the lead time.

Lemma 3. For a time-homogeneous lead time process {Lt} and i.i.d. de-

mand process {Dt}, the variance of the shortfall distribution is given by:

σ2SF = (µL + 1)σ2D + σ2V µ
2
D.

Proof. This is a straightforward computation which can be found in Ap-

pendix G for the sake of completeness.

Remark: This expression for σ2SF also appears in Disney et al. (2016) for

the case of i.i.d. lead times. We see that this result generalizes to correlated

lead times.

Lemma 3 shows that the only part of σ2SF that is influenced by the correlation

in the lead time process, is the variance of the number of outstanding orders,

σ2V . For Markov modulated lead times we can make use of gk (obtained
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in Theorem 1) to determine the value of σ2V . When we restrict to a 2-

dimensional Markov modulated lead time, we can express σ2V analytically.

4.2. Markov Modulated Lead Time Process

By making use of gk, we can numerically find the value of σ2V in case of

Markov modulated lead times:

σ2V =
m∑
k=0

gkk
2 − µ2L,

with m := sup(S). In case S is unbounded, this is an infinite series.

4.3. Two-state Markov Modulated Lead Time Process

In this section we show some properties in case {Lt} can only take two

values, say m,m′ ∈ N. The main result from this section is Theorem 2,

where we show that the variance of the shortfall increases in function of the

correlation in the lead time. Further we provide explicit lower and upper

bounds on the variance of the shortfall (Proposition 3) and its asymptotic

value as |m−m′| → ∞ (Proposition 4).

Assume without loss of generality that m′ < m and let m := m − m′
(note that with only two possible lead times we can have crossovers except

if m′ = m− 1). The shortfall is given by:

SFt = Dt +

m′−1∑
k=0

Dt−k−1 +

m−1∑
k=0

δ{Lt+m′+k = m}Dt−m′−k−1.

Indeed, at any time t, we know that the orders placed up to m′ − 1 periods

ago (reflected in the first term of SFt), are yet to be delivered in inventory.

The orders placed at least m′ but no more than m periods ago (the second

term of SFt) are not yet delivered if and only if that order has lead time m.

Define the process Lt := Lt −m′, the above yields σ2SF = m′σ2D + σ2
SF

, with

SF the shortfall distribution for the lead time process {Lt}. As the part

m′σ2D does not depend on the correlation in the lead time process, we focus

on σ2
SF

; for this process the lead times are given by 0 and m. For ease of

notation, we let {Lt} be the lead time process with state space S := {0,m}
and keep in mind that if we were to replace the zero lead time by a non-zero

lead time, we have to add the part m′σ2D.
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As discussed in Section 3.3, for 2-state Markov modulated lead times,

the variance of the shortfall distribution only depends on ` as `n = `n. This

enables us to find a non-decreasing function f s.t. if we fix m and the steady

state π = (α, 1 − α), we have σ2SF = c + f(`,m), where c is independent of

`. This implies that the variance of the shortfall is a deterministic function

of the correlation and the value of m; more specifically it is non-decreasing

with respect to the correlation.

Proposition 2. For a 2-state Markov modulated lead time process with lead

times 0 and m ∈ N and i.i.d. demand process, we have:

σ2V =
σ2L
m

+
2σ2L
m2

m−1∑
k=1

(m− k)`k.

This entails:

σ2SF = σ2i.i.d. + 2
(µDσL

m

)2 m−1∑
k=1

(m− k)`k,

with σ2i.i.d. = σ2const +
µ2Dσ

2
L

m and σ2const = (µL + 1)σ2D.

Proof. See Appendix H.

Proposition 2 shows that σ2SF consists of three parts. The first two

parts are known results in standard inventory theory: (µL + 1)σ2D repre-

sents the variance of the shortfall that is due to the mean number of or-

ders that have not yet arrived and thus corresponds to the case of constant

lead times; The second part
µ2Dσ

2
L

m is due to introducing variability into the

steady state of the lead time process, this part is always positive and corre-

sponds to the case where we have an i.i.d. lead time process. The last part,

2
(µDσL

m

)2∑m−1
k=1 (m − k)`k, is new and is due to the correlation in the lead

time process. It is however important to note that this part need not be

positive; indeed, for negative values of `, this part may be negative.

We now explicitly show that in case of a 2-state Markov modulated

lead time process, this last term is non-decreasing with respect to the lag-1

correlation (and zero when the correlation is zero). We then extend these

results to the general Markov modulated process numerically.
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Define the function

f(x, n) :=
1

n2

n−1∑
k=1

(n− k)xk, n ∈ N, x ∈ [−1, 1].

Then according to Lemma 1, we find a closed-form result for the variance

of the shortfall in function of the lag-1 correlation:

σ2SF = σ2i.i.d. + 2µ2Dσ
2
Lf(`,m).

By analyzing f , we can show that σ2SF increases in function of the cor-

relation in the lead time process, which leads to Theorem 2.

Lemma 4. The function f(x, n) defined above is non-decreasing in function

of x on [−1, 1]× N, i.e. ∀x ∈ [−1, 1],∀n ∈ N : ∂f(x,n)∂x ≥ 0.

Proof. See Appendix I.

Theorem 2. For a 2-state Markov modulated lead time process and i.i.d. de-

mand, we have:
∂σ2

SF
∂` ≥ 0.

Proof. This is a trivial consequence of the above discussion and Lemma 4.

Remark: Even though we have shown that σ2SF is non-decreasing with

respect to the lag-1 correlation, it is clear from the definition of f that the

slope of σ2SF is much steeper on [0, 1] than on [−1, 0]. Indeed, for ` ∈ [−1, 0]

all odd powers of ` are increasing while the even powers of ` are decreasing,

whilst for ` ∈ [0, 1] they are all increasing.

Theorem 2 implies that stronger correlation in lead times leads to more

volatile inventory. This result also allows us to get a lower and upper bound

for the shortfall variance, as they coincide to the cases with respectively

minimal and maximal lead time correlation:

Proposition 3. Assume we have a 2-state Markov modulated lead time

process and i.i.d. demand. The variance of the shortfall is bounded from

above by:

σ2SF ≤ σ2i.i.d. + µ2Dσ
2
L = σ2LTD,
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and this bound is tight. A lower bound (independent of the steady state π)

is given by:

σ2i.i.d. + 2µ2Dσ
2
L ·

1

4m2
(−2m+ (−1)m+1 + 1) ≤ σ2SF,

and this bound is attained for even values of m and α = 1/2. For even m

and arbitrary α, this lower bound reduces to σ2const. For arbitrary values of

m and α, the following lower bounds are tight:σ
2
lower,1 := σ2i.i.d. − 2µ2Dσ

2
L ·

(m−µL)
(
µL

((
1− m

µL

)m
−1

)
+m2

)
m4 ≤ σ2SF if α ≤ 1

2 ,

σ2lower,2 := σ2i.i.d. − 2µ2Dσ
2
L ·

µL

(
m
((

µL
µL−m

)m
+m−1

)
−µL

((
µL

µL−m

)m
−1

))
m4 ≤ σ2SF if α ≥ 1

2 .

Proof. See Appendix J.

Remark: These lower and upper bounds are tight for any steady state

of the lead time. We note that the tight lower bound depends on this

steady state, whilst the upper bound does not. This is a consequence of the

fact that any steady state may correspond to a perfectly correlated process,

whilst the perfectly negative correlated process has a unique steady state,

namely the uniform distribution. For a general discussion on these bounds,

see the proof of Proposition 3.

We use these expressions of σ2SF to analyze σ2SF/σ
2
const for m→∞, which

gives an idea of the magnitude of the error made by assuming constant lead

times whilst you actually have i.i.d. or correlated lead times.

Proposition 4. Assume we have a 2-state Markov modulated lead time

process and i.i.d. demand. Denote θ :=
αµ2D
σ2
D

, the following convergence

holds (here we take the limit for m→∞):

• σ2i.i.d./σ2const → 1 + θ

• σ2LTD/σ
2
const →∞

• σ2lower,1/σ2const → 1 + (1− 2α)θ

• σ2lower,2/σ2const → 1 + (1− 2(1− α))θ

• In particular for α = 1/2 we get σ2lower,1/σ
2
const = σ2lower,2/σ

2
const → 1.

Proof. See the Appendix K.
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Remark: The interpretation of Proposition 4 is as follows. Suppose we

have a positively correlated lead time process with 2 sufficiently distinct

lead times. If we estimate the variance of the shortfall (and with this, the

base-stock level) assuming i.i.d. lead times, then we make an error which is

no larger than:

σ2LTD/σ
2
i.i.d. = σ2LTD/σ

2
const · σ2const/σ2i.i.d..

Using Proposition 4 we find that this can become arbitrarily large! Hence,

ignoring the lead time correlation potentially under-estimates the base-stock

level. This misspecification increases with m and is unbounded.

We generalize these results in the more dimensional framework, but here

we no longer have `n = `n (even for Markov modulated lead times) and we

have to work with the different lag-n correlations.

4.4. Extension to Time-Homogeneous Lead Time Processes

Lemma 3 shows that the only part of σ2SF that is influenced by the lead

time correlation is σ2V , which equals:

σ2V =

∞∑
k=0

Var(δ{L > k}) + 2
∑

0≤k<l
Cov(δ{Lt−l > l}, δ{Lt−k > k}). (1)

When we move from a 2-state time-homogeneous lead time process to

a general time-homogeneous lead time process, a tractable analysis of the

variance of the shortfall distribution is unfortunately elusive as:

• When Lt can only take 2 values, the terms δ{Lt > k} in Eq. (1), which

equal 0 if Lt ≤ k and 1 otherwise, reduce to Lt/m for 0 < k < m.

However, when moving to a more-dimensional lead time process, such

a simplification is no longer possible.

• Even if we found a way to write Cov(δ{Lt−l > l}, δ{Lt−k > k}) as a

function of {Lt−k}, in general it is no longer possible to find functions

{fm} s.t. `m = fm(`). Making these functions dependent on the steady

state of the Markov process does not solve this problem (as illustrated

by the example in Appendix L). This makes it highly unlikely that

Eq. (1) can be written in function of the lag-1 correlation as we did in

Proposition 2.
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Nevertheless, we can show that the same lower and upper bound on

the variance of the shortfall distribution (see Proposition 4) still hold when

we extend from a 2-state to a general time-homogeneous lead time process.

We also conjecture that more correlation in the lead time process implies

a higher variance in the shortfall and we provide the intuition behind this

conjecture. Particularly interesting is the fact that as correlation in the

lead time increases, the shortfall distribution tends towards the lead time

demand. Whereas we could prove this for a 2-state Markov modulated lead

time in Proposition 1, we now conjecture this finding for a general time-

homogeneous process.

In Eq. (1), only the last term is influenced by the lead time correlation:

Cov(δ{Lt−k > k}, δ{Lt−l > l}) = E[δ{Lt−k > k}δ{Lt−l > l}]− P{L > k}P{L > l}
= P{L > l} · (P{Ll−k > k | L0 > l} − P{L > k}).

(2)

The influence of the correlation in the lead times is captured in the term

P{Ll−k > k | L0 > l} − P{L > k} which is the difference between on the

one hand the probability of having an order with lead time longer than k,

knowing that the order placed l− k periods ago, has a lead time of at least

l periods, and on the other hand the probability of having a lead time of at

least k with no prior information. It is likely to expect that if the correlation

in cumulative lead times increases, P{Ll−k > k | L0 > l} increases while

P{L > l} is not influenced. Moreover for positive correlation one would

expect that generally P{Ll−k > k | L0 > l} − P{L > k} > 0.

Also, similar to the 2-state lead time case, we find that in the more-

dimensional case, we have a steeper ascend in the variance of the shortfall

for ` ∈ [0, 1]. This was implicitly proven for the 2-dimensional lead time

process in Lemma 4, where we derive an exact expression for the variance of

the shortfall in function of `. Here, we see that as long as we have negative

correlation, the probability P{Ll−k > k | L0 > l} might behave unexpected,

depending on the difference between l and k. Once the correlation is positive,

these probabilities all increase in function of the correlation.

Unfortunately, a direct generalization of Theorem 2, which would be to

state that
∂σ2

SF
∂` ≥ 0, is not possible (see Appendix L). However, from the

intuition obtained above we can conjecture the following generalization in
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the more dimensional case:

Conjecture 1. Suppose we have two time-homogeneous lead time processes

{Lt} and {L′t} with the same steady state s.t. for all k ∈ N, we have:

Cov(L0, Lk) ≤ Cov(L′0, L
′
k),

and i.i.d. demand. Then the variance of the shortfall distribution σ2SF cor-

responding to the lead time process {Lt} is smaller than that corresponding

to the the lead time process {L′t}.

Although we cannot prove Conjecture 1, we at least have the following

(weak) non-decreasing result:

Proposition 5. Suppose we have i.i.d. demand and two time-homogeneous

lead time processes {Lt} and {L′t} with the same steady state s.t. we have

for all k < l ∈ N:

P{Ll−k > k | L0 > l} ≤ P{L′l−k > k | L′0 > l},

then we have that the σ2SF corresponding to the process {Lt} is smaller than

that of the process {L′t}.

Proof. This is immediately clear from Eqs. (1-2).

We now establish bounds on σ2SF for general time-homogeneous lead time

processes.

Theorem 3. For a time-homogeneous lead time process {Lt}, we have:

0 ≤ σ2V ≤ σ2L. In particular, this implies for i.i.d demand {Dt}, that σ2SF is

bounded by:

σ2const = (µL + 1)σ2D ≤ σ2SF ≤ (µL + 1)σ2D + σ2Lµ
2
L = σ2LTD.

Proof. See Appendix M.

Remark: The upper bound is tight as it is attained by taking the limit

`→ 1 for appropriately chosen transition matrices. In the two dimensional

case we noticed that for Markov modulated lead times it was possible to

obtain σ2V = 0 for even values of m, by taking perfectly negative correlated

lead times (see the Proof of Proposition 3). We may wonder whether this
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is still possible in the multi-dimensional case by posing this as an algebraic

question. We therefore numerically checked with state space {0, . . . ,m} and

π uniform for m = 2, . . . , 10 that σ2V = 0 is always attainable. Without

going further into detail, we conjecture the answer is yes: for an appropriate

state space and uniform steady state, it is always possible to attain σ2V = 0

for an arbitrary number of possible distinct lead times. This means that

for a uniformly distributed steady state and S = {n, n + 1, . . . , n + k} for

some n, k ∈ N, the lower bound found by setting σ2V = 0 is always attained,

however for other π and S, one could find a lower bound which is more tight

(as we did for the 2-dimensional case in Proposition 3).

This upper bound corresponds to the one found in Robinson et al. (2001)

for i.i.d. lead times, which corresponds to the case without crossovers (where

the shortfall equals the lead time demand). Note however, that the bounds

provided by Bradley et al. (2005) for i.i.d. lead times:

• σ2V ≤ min
{
σL√
3
, µL

}
;

• if L ∈ [µL − kσL, µL + kσL] then
(

k
k2+1

)
σL ≤ σ2V ,

no longer hold in the presence of lead time correlation, as σ2V tends towards

σ2L when the correlation increases (see Proposition 1 for the 2-state lead time

process). The lower bound does not generalize either as the variance of the

shortfall may be zero for an appropriate correlation structure.

Similar to the 2-state lead time case, the upper bound for the variance

of the shortfall corresponds to the setting with no order crossovers, in which

case the shortfall is just the lead time demand LTD =
∑L

k=0Dk, which is

independent of the correlation in the lead time process.

5. Numerical Examples

In this section we numerically illustrate how the presence of lead time

correlation impacts the variance of the shortfall and the optimal base-stock

levels. We first consider the lead time data of the inter-port shipping route

SHA-ORD, visualized in Figure 1. We then further investigate the impact

of correlation in lead times for a wider range of correlation values using

generated data in Section 5.2.

23



5.1. Real Data

To assess the impact of lead correlation using the lead time data of the

inter-port shipping route SHA-ORD in Figure 1, we discretize the lead times

to the state space S = {10, 15, 20, 25, 30, 35} (we do this by replacing each

lead time with the value closest to it in S). Let Ai,j denote the number of

occurrences of the transition from a lead time equal to i to a subsequent lead

time which equals j; the associated transition matrix L is then obtained by

Li,j = Ai,j/
∑

j Ai,j .

Figure 4 (left panel) shows how the distribution of the number of out-

standing orders gk under the correlated lead time process compares to its

i.i.d equivalent (by assuming {Lt} is i.i.d. with distribution π). Although

the difference may not seem significant, we find that the variance of the

number of outstanding orders under i.i.d. lead times is σ2V = 2.5, whereas

we have σ2V = 4.7 when the lead time correlation is taken into account.

When we optimize the base-stock level by setting:

S∗ := argmin{S ∈ N | P{SF ≤ S} ≤ b/(b+ h)},

and assume an i.i.d. Poisson(10) demand and service level b/(b+ h) = 0.95,

we find that S∗ = 191 and the corresponding safety stock is 46 for this (cor-

related) lead time process. In contrast, assuming i.i.d. lead times, we would

set S∗ = 179 or a safety stock of 34. Clearly, ignoring the correlation in

lead times would set the base-stock and safety stock levels too low. Figure 4

(right panel) illustrates how this gap grows as demand increases.

We also performed some sensitivity analysis on the service levels. Fig-

ure 4 (bottom panel) shows that for high service levels, the safety stocks

are higher under correlated lead times, but it is the opposite for low service

levels. In the latter case, positive lead time correlation leads to lower base-

stock and safety stock levels, despite its higher inventory variance. This is

due to the shape of the distribution of the number of outstanding orders.

5.2. Generated Data

We assume an i.i.d. demand {Dt} which is Poisson(10) distributed and

a lead time process {Lt} that follows a 5−state Markov process with state

space S = {0, 7, 8, 9, 10} and steady state π =
(
1
5

1
5

1
5

1
5

1
5

)
. We have run

many numerical experiments and decided to include this setting because it

allows a broad range of correlation values (incl. negative correlation as π
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Figure 4: Top left: Distribution of the number of outstanding orders under correlated
versus i.i.d. lead times. Top right: Comparison of safety stocks in function of λ, for
b/(b + h) = 0.95 and an i.i.d. Poisson(λ) demand process. Bottom: comparison of safety
stocks in function of service level (characterized by b/(b+h)) for i.i.d. Poisson(10) demand.

is uniformly distributed). Also, as we have essentially two ranges of lead

times (a short lead time L = 0 with probability 1/5 and a long lead time

L ∈ {7, 8, 9, 10} with probability 4/5), the lead time demand is bi-modal.

The latter is interesting as it demonstrates how the shortfall (and thus the

inventory) distribution becomes bi-modal when we alter the lead time cor-

relation.

We introduce a control parameter ϕ to control the correlation in lead

times for a given uniform steady state π, such that as ϕ goes from −1 to

1, the lag-1 correlation ` of the associated process increases, with positive

ϕ referring to positive correlation and negative ϕ indicating negative corre-

lation. To this end, let for a, b ∈ R : γa,b(ϕ) := a(1 − ϕ) + bϕ be the linear

function connecting a and b. Using these we define the transition matrix
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L(ϕ) of the Markov modulated lead time by letting:

L
(ϕ)
i,j :=



γπj ,1(−ϕ) if ϕ ∈ [−1, 0], i = |S| − j + 1,

γπj ,0(−ϕ) if ϕ ∈ [−1, 0], i 6= |S| − j + 1,

γπj ,1(ϕ) if ϕ ∈ [0, 1], i = j,

γπj ,0(ϕ) if ϕ ∈ [0, 1], i 6= j.

For any ϕ, the matrix L(ϕ) is a transition matrix with steady state π. With

this representation, L(−1) is the anti-diagonal matrix, L(0) is the transition

matrix corresponding to the i.i.d. case and L(1) corresponds to the perfect

correlation case. As the steady state is uniformly distributed, the anti-

diagonal matrix is a possible transition matrix, yet ` = −1 is not achievable.

Figure 5 (left panel) illustrates how the correlation (we plot the lag-1, 2, 3

correlations) changes in function of the control variable ϕ for our specific

example. For positive ϕ, the different lag correlations all increase in function

of ϕ. However, on [−1, 0] only the odd lag correlations increase. We see that

we still have `n ≈ `n, suggesting that the variance of the shortfall will have a

steeper slope on [0, 1] than on [−1, 0]. These lag correlations in turn control

the variance of the shortfall distribution.

The right panel in Figure 5 shows how the value of ϕ impacts the variance

of the shortfall. The variance of the shortfall decreases for ϕ going from −1

to 0, which is not in line with the results for the 2-state lead time case

(which revealed that the variance of the shortfall increases in the lead time

correlation). However, if we were to identify the states 7, 8, 9, 10 as one

state, the steady state becomes [1/5 4/5], and in the 2-state lead time case

the variance of the shortfall increases in the lag-1 correlation. Apparently,

the fact that we have more lead time states influences this effect. The

key takeaway is that for negative correlation the behavior of σ2SF is less

predictable but also less significant than for positive ϕ. Indeed, through

many numerical experiments and as well for the analytical results in the 2-

state lead time process, we found that the increase in variance of the shortfall

on [0, 1] is substantially larger than the change on [a, 0] where a represents

the minimal attainable correlation. As positive correlation is also the most

natural type of correlation in the lead time process, that region is therefore

of most interest.

Assuming a backlog cost b = 20 and holding cost h = 2, we now evaluate
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Figure 5: Left panel: the lag 1, 2, 3 correlation associated to L(ϕ) with state space S =
{0, 7, 8, 9, 10} and π =

(
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)
) in function of the parameter ϕ ∈ [−1, 1]. Right panel:

the corresponding variance of the shortfall distribution for Poisson(10) distributed demand
together with the theoretical upper/lower bounds obtained in Theorem 3, respectively
given respectively given by σ2

LTD and σ2
const.

the optimal base-stock level and its corresponding inventory related costs

in function of the parameter ϕ. The distribution of the shortfall can be

determined in our example as follows: we first determine the distribution of

the number of outstanding orders V by means of recursion using Theorem

1. The shortfall is then Poisson((k + 1) · 10) distributed with probability

P{V = k} (as the sum of independent Poisson processes with parameters λ1

and λ2 is again Poisson with parameter λ1 + λ2).

We benchmark our exact procedure with several existing approximations

that rely on the approximation of the shortfall distribution to determine

the optimal base-stock level. The first two approximations take lead time

correlation into account. The subsequent four approximations “ignore” the

lead time correlation.

1. Fit the shortfall distribution with a normal distribution with mean

µSF and variance σ2SF for each value of ϕ. We denote this the “nor-

mal” approximation.

2. Instead of the normal distribution, we fit the shortfall distribution to a

negative binomial distribution, referred to as the “NB”approximation.

This was suggested by Robinson et al. (2001).

3. We calculate the variance of the shortfall σ2i.i.d. independent of the

correlation in the lead time process and approximate the shortfall to a
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normal random variable with mean µSF and variance σ2i.i.d.. We refer

to this strategy as “i.i.d.”.

4. We assume lead times are deterministic and approximate the shortfall

by a normal random variable with variance σ2const and mean µSF. We

refer to this strategy as “Const”. This corresponds to the lower bound

on the base-stock level.

5. We assume there are no crossovers and approximate the lead time

demand to a normal variable with mean µSF and variance σ2LTD. We

refer to this method as “LTDn”.

6. We assume there are no crossovers and use the exact lead time demand

distribution, which is independent of the correlation, to approximate

the shortfall. We refer to this strategy as “LTDex”. This corresponds

to the upper bound on the base-stock level.

Figure 6 summarizes the results of the base-stock calculations using these

methods. It shows how the optimal base-stock levels generally increase in

function of ϕ on [0, 1], which is due to the fact that the variance of the

shortfall distribution increases in function of ϕ. We see that the base-stock

level increases dramatically as ϕ, and thus the lead time correlation, gets

closer to one. Clearly, assuming i.i.d. lead times is appropriate only when

the correlation is negligible (ϕ ≈ 0). Assuming constant lead times always

leads to a severe underestimation of the optimal base-stock level. We also

observe that ignoring crossovers and using the exact lead time demand only

works well for ϕ ≈ 1. Finally, fitting a normal distribution to the lead time

demand seems to always result in significant overestimations of the base-

stock level. In other words, ignoring the correlation in lead times never

leads to a good estimate for the optimal base-stock policy.

We also deduce that, whilst for small values of ϕ the negative binomial

and normal distribution seem to be approximating the shortfall distribution

fairly well, the same can not be said for large values of ϕ. Even though the

correlation in lead times is taken into account, we find that when using the

negative binomial and normal approximations, the optimal base-stock levels

are overestimated. That is due to the fact that the increase in optimal base-

stock levels when going from zero to perfect correlation is lower than would

be expected from the increase in variance of the shortfall distribution. This
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Figure 6: Left panel: The base-stock level for the different approximations of the shortfall
distribution in function of ϕ with b = 20, h = 2. Right panel: The total costs of the
corresponding base-stock policy with backlog cost b = 20 and holding cost h = 2.

is a consequence of the fact that the lead time demand is multi-modal and

for strongly correlated lead times we have that the shortfall tends towards

the lead time demand (in the two dimensional case we showed this in Propo-

sition 1, and for ` = 1 it holds that SF
d
= LTD in the general case). This

effect occurs when the lead time values sufficiently differ from each other

and there is strong correlation between subsequent lead times.

The right panel of Figure 6 shows the average inventory related costs,

E[h · (S∗ − SF)+ + b · (S∗ − SF)−],

corresponding to these optimized base-stock levels S∗ under the different

approximations, when imposing them to our setting with correlated lead

times. In general, we find that all approximations which do not take the

correlation in lead times into account, lead to significant higher inventory

costs. Clearly, the higher the misspecification of the base-stock level, the

higher the total costs. The normal and negative binomial approximations,

which both take the variance of the shortfall into account, perform best

among all considered approximations. For high correlation however, also

these approximations yield much higher total costs. That is due to the

fact that these approximations overestimate the optimal base-stock level, as

discussed before.

When we focus on the relative cost increase by using the normal/negative

binomial distribution to fit the shortfall distribution (see Figure 7), we see

that the cost increase is substantial for higher values of ϕ (up to a 20% cost

29



−1 −0.5 0 0.5 1

0

5

10

15

20

ϕ

R
el
at
iv
e
C
os
t
In
cr
ea
se

(%
)

Normal

NB

Figure 7: Relative cost increase by using a negative binomial or normal fit for the shortfall
distribution.

increase in our example). This effect is reinforced for larger values of the

service level, defined by b/(b + h). Note that in this example, the normal

approximation to the shortfall distribution yields better results than the

negative binomial approximation. However, we have found this to be due to

the choice of numeric experiment; both approximations do consistently give

substantially higher costs, but which one is better depends on the numerical

example considered.

Inspired by this observation, we attempted to find the root cause of this

overestimation. By looking at the probability density function (pdf) of the

shortfall (see Figure 8), we observe that if ϕ is sufficiently different from 0,

the pdf of the shortfall becomes multi-modal (both for negative and positive

correlation) and the normal/negative binomial distributions are no longer

a good fit for the distribution of the shortfall. This effect is much more

prevalent for high lead time correlation (high values of ϕ). Due to this

multi-modality, the variance of the shortfall increases significantly, whereas

the right tail of the distribution does not become fat. This results in an

over-estimation of the base-stock level when uni-modal approximations of

the shortfall are used, as is also evident from the left panel of Figure 6. The

same multi-modality is observed (albeit to a lesser extent) for negative lead

time correlation, which also leads to (albeit more modest) overestimations

of the base-stock level (see Figure 6 left panel).

This numerical experiment revealed that in the presence of positive lead

time correlation, ignoring the correlation and assuming i.i.d. lead times,
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Figure 8: The probability density functions of the (exact) shortfall distribution compared
to those of the normal and negative binomial estimates for different values of ϕ.

leads to an underestimation of the base-stock level as the correlation makes

the inventory levels more volatile. Alternatively, when we take the correla-

tion into account and fit a uni-modal distribution (e.g., normal or negative

binomial) with the correct mean and variance, we again introduce an error,

but in this case we overestimate the base-stock level due to the multi-modal

character of the shortfall distribution. In case of strongly correlated lead

times, it is advised to make use of (near-)exact methods like the one pro-

posed in this paper, or the numerical method suggested by Muharremoglu

and Yang (2010) when historical lead time data are available.

6. Conclusions

This paper studies the impact of correlation in stochastic lead times, in

combination with order crossovers on inventories. When lead times are cor-

related, the lead time demand is not impacted, but the shortfall distribution
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and hence the inventory distribution and optimal base-stock levels are. With

the exception of Bischak et al. (2014) and Muharremoglu and Yang (2010),

the literature that takes order crossovers into account, assumes i.i.d. lead

times. We contribute to the literature by providing structural results on the

impact of lead time correlation on the inventory distribution. We also study

how the current approximations (which assume i.i.d. lead times) perform in

the presence of lead time correlation.

Our results show that higher correlation values generally imply higher

inventory variance. This effect is significant for positive correlation (i.e.,

when going from uncorrelated to perfect correlation), and rather modest

(and sometimes even reversed) when going from the most negative corre-

lation to no correlation. We established lower and upper bounds on the

variance of the shortfall: whereas the upper bound is tight, the lower bound

is only tight for a certain choice of state space and steady state. We char-

acterized the latter dependence for the 2-state Markov modulated lead time

process, which enabled us to derive tight lower bounds for arbitrary steady

state and state space.

As the optimal base-stock levels are highly dependent on the correlation

in lead times, it should therefore be taken into account when setting base-

stock levels. Due to the fact that the shortfall distribution, and thus also the

inventory distribution, becomes multi-modal for high lead time correlation,

the base-stock level increases less than one may first expect based on the

variance of the shortfall. Given the non-negligible impact of the lead time

correlation and the multi-modal distribution of the shortfall distribution for

high lead time correlation, it is advised to apply exact methods like the one

proposed in this paper.
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Appendix A. List Of Notations

t ∈ N Time period

{Lt} Lead time process

S Countable state space of {Lt}

π Steady state of {Lt}

L Transition matrix of {Lt} if it is a discrete time Markov chain

{Dt} Demand process

Qt Order Quantity placed in period t

SFt Shortfall at the end of period t

It Inventory at the end of period t

S Base-stock level

h Per unit holding cost

b Per unit shortage cost

f+ Defined as f+(s) = f(s) ∨ 0 = max{f(s), 0}

f− (−f)+

LTDt Lead time demand at time t

Vt Number of outstanding orders at time t

d
= Equality in distribution

→d Convergence in distribution

g(s;k|n) Probability that of the last n orders, exactly k are outstand-

ing and the order placed n periods ago has lead time s

g(k|n) Probability that of the last n orders, k are still outstanding

gk Probability that there are k outstanding orders

`n Correlation between Lt and Lt+n
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` `1

X(n) The n−fold convolution of a random variable X

µX The mean of a random variable X

σ2X The variance of a random variable X

Appendix B. Example associated to Section 3.1

Assume a system with lead time process {Lt} where no order crossovers

occur and the possible lead times are 0, 1 and 2. Assume further that {Lt}
follows a Markov process, with transition matrix L. The shortfall distri-

bution remains the same as long as the steady state does not change, for

example if we take the steady state π :=
(
1
3

1
3

1
3

)
then we find that all

transition matrices of the form:

L =

 a b 1− a− b
1− a c a− c

0 1− b− c b+ c

 , 0 ≤ a, b, a+ b, c, a− c, b+ c ≤ 1,

lead to the same shortfall distribution. More generally, as long as we have

for any s ∈ N, s1, s2 ∈ S, s1 < s < s2 that also s ∈ S and L is an up-

per Hessenberg matrix then the shortfall distribution is independent of the

chosen transition matrix given some fixed steady state. However once we

allow the possibility of having crossovers, the shortfall distribution becomes

dependent on the correlation in {Lt}.

Appendix C. Proof of Theorem 1

We first need to introduce some new notation. For n ∈ N we denote

q′(s,in−1,...,i0)
, s ∈ S, in−1, . . . , i0 ∈ {0, 1} as the probability that the order

placed n periods ago has lead time j and for k ∈ {0, . . . , n−1} we have that

the order placed k periods ago has arrived if ik = 0 and has not yet arrived

if ik = 1.

Formally we have:

q′(s;in−1,...,i0)
:= P{Lt−n = j, Lt−(n−1) ∼in−1 n− 1, . . . , Lt ∼i0 0}
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where we denote:

∼i:=

≤ if i = 0

> if i = 1.

We have the following recursive relation for these values:

q′(s;in−1,...,i0)
= P{Lt−n = s;Lt−(n−1) ∼in−1 n− 1, . . . , Lt ∼i0 0}
=

∑
sn−1∈S,sn−1∼in−1

(n−1)

P{Lt−n = s, Lt−(n−1) = sn−1, Lt−(n−2) ∼in−2 n− 2, . . . , Lt ∼i0 0}

=
∑

sn−1∈S,sn−1∼in−1
(n−1)

P{Lt−n = s | Lt−(n−1) = sn−1} · q′(sn−1,in−2,...,i0)

=
∑

sn−1∈S,sn−1∼in−1
(n−1)

πs
πsn−1

Ls,sn−1q
′
(sn−1;in−2,...,i0)

.

Remark: In case demand is not assumed to be i.i.d., one should take into

account which orders are still outstanding to find the shortfall distribution.

One can do this by using q(in,...,i0) :=
∑

s∈S q
′
(s;in,...,i0)

, which can be calcu-

lated by applying the above recursion.

We use this recursive relation to show the correctness of the formula for

g(s;k|n). Let An+1
k := {(i0, . . . , in) ∈ {0, 1}n+1 |∑n

j=0 ij = k}, we find:

g(s;k|(n+1)) =
∑

(i0,...,in)∈An+1
k

q′(s;in,...,i0)

=
∑

(i0,...,in)∈An+1
k

∑
sn∈S,sn∼inn

πs
πsn

Ls,snq
′
(sn;in−1,...,i0)

=
∑

sn∈S,sn≤n

πs
πsn

Ls,sng(sn;k|n) +
∑

sn∈S,sn>n

πs
πsn

Ls,sng(sn;(k−1|n)).

Appendix D. Proof of Lemma 1

We denote the transition matrix associated to {Lt} by L :=

(
a 1− a
b 1− b

)
,

0 ≤ a, b ≤ 1 and its steady state by π :=
(
α 1− α

)
, 0 < α < 1. As we

have πL = π and α /∈ {0, 1} we find that:

L =

(
a 1− a

α(1−a)
1−α

αa−2α+1
1−α

)
,
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with max{2α−1α , 0} ≤ a < 1. Therefore:

` = Corr(Lt, Lt+1) =
E[LtLt+1]− µ2L

σ2L

=
m2(αa− 2α+ 1)−m2(1− α)2

(1− α)2 − (1− α)
=
a− α
1− α.

From this we already see that ` does not depend on m. It is easily checked

that Det(L) = a−α
1−α . The second part now follows by defining the process

{L′t} as L′t := Ltn for each t ∈ N. Denote L′ for the transition matrix

corresponding to {L′t} and `′n for its lag−n correlation. We find:

`n = `′1 = Det(L′) = Det(Ln) = `n1 .

We saw above that ` = a−α
1−α , using this and the fact that `n = `n we instantly

find:

Ln =

(
(1− α)`n + α (1− α)(1− `n)

α(1− `n) α`n + (1− α)

)
.

In order for this to be a transition matrix for n = 1 is α/(α − 1) ≤ ` if

α ∈ [0, 1/2] and (α − 1)/α ≤ ` if α ∈ [1/2, 1]. This completes the proof as

any product of transition matrices is again a transition matrix.

Appendix E. Proof of Proposition 1

Applying Lemma 1 we find:

E[|Vt − Lt|] = π0E[Vt | Lt = 0] + πmE[(m− Vt) | Lt = m]

= π0E

[
m−1∑
k=0

δ{Lt−k > k}|Lt = 0

]
+mπm − πmE

[
m−1∑
k=0

δ{Lt−k > k}|Lt = m

]

= πm

(
m−1∑
k=0

(Lk)m0

)
+ πm

(
m−

m−1∑
k=0

(Lk)mm

)

=
2(1− α)α (`m − `m+m− 1)

1− ` .

Appendix F. Proof of Corollary 1

Suppose we have some sequence {`(n)} in [0, 1] which converges to 1. We

use the notation V (n) and SF(n) for the associated number of outstanding

orders and shortfall distribution.
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We show that the characteristic function (CF) of the shortfall converges

to the CF of the lead time demand (this is equivalent to weak convergence).

For a random variable X, the CF is defined as φX(t) := E[eitX ], which

yields:

φSF(n)(t) = E[eitSF
(n)

]

= E

V (n)∏
k=0

eitDk


= E

V (n)∏
k=0

E[eitDk | V (n)]


= E[φD(t)V

(n)
].

Analogously one finds φLTD(t) = E[φD(t)L]. We should therefore show

that for any a ∈ C we have E[aV
(n)

] converges to E[aL] for n → ∞. As

we have convergence of V (n) to L in L1 norm, this convergence also holds

in distribution. Since V (n) and L are both bounded (let M be an upper

bound for both these values) this entails the sought convergence. Indeed

letting f(x) := ax for x ≤M and f(x) = Mx for x > M we find: E[aV
(n)

] =

E[f(V (n))]→ E[f(L)] = E[aL].
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Appendix G. Proof of Lemma 3

We can calculate the variance of the shortfall in function of V . By

applying the law of total variance in the second equality, we find:

σ2SF = Var

(
Vt∑
l=0

Dl

)

= E

[
Var

(
Vt∑
l=0

Dl | Vt
)]

+ Var

(
E

[
Vt∑
l=0

Dl | Vt
])

=

∞∑
k=0

P{V = k}σ2D(k + 1) +

∞∑
k=0

((k + 1)µD)2P{V = k} − µ2D(µL + 1)2

= σ2DE[V + 1] + µ2DE[(V + 1)2]− µ2D(µL + 1)2

= σ2D(µV + 1) + (σ2V + µ2V + 2µV + 1)µ2D − µ2D(µL + 1)2

= σ2D(µL + 1) + (σ2V + µ2L + 2µL + 1)µ2D − µ2D(µL + 1)2

= (µL + 1)σ2D + σ2V µ
2
D.

Appendix H. Proof of Proposition 2

For the variance of the number of outstanding orders, we find:

σ2V = Var

(
m−1∑
k=0

δ{Lt−k > k}
)

=
m−1∑
k=0

Var(δ{L > k}) + 2
∑

0≤k<l<m
Cov(δ{Lt−l > l}, δ{Lt−k > k}).

As we have L ∈ {0,m} we have for any k ∈ {0, . . . ,m − 1}, t ∈ N : δ{L >

k} = L
m . This allows us to express:

σ2V =
σ2L
m

+
2

m2

∑
0≤k<l<m

Cov(Lt−l, Lt−k).

In case we work with i.i.d. lead times we find (using Lemma 3):

σ2SF = (1 + µL)σ2D +
µ2Dσ

2
L

m
= σ2const +

µ2Dσ
2
L

m
,
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which is the reason why we denote this value by σ2i.i.d.. In the correlated

case we note that:

Cov(Lt−l, Lt−k) = σ2LCorr(L0, Ll−k) = σ2L`l−k.

This yields:

σ2V =
σ2L
m

+
2σ2L
m2

m−1∑
k=1

(m− k)`k.

From this we can infer:

σ2SF = σ2i.i.d. + 2
(µDσL

m

)2 m−1∑
k=1

(m− k)`k.

Appendix I. Proof of Lemma 4

Fix some arbitrary n ∈ N, it obviously suffices to show the claim for

p(x) =

n∑
k=1

(n+ 1− k)xk.

Taking the sum from 0 to n− 1 and taking the derivative yields:

p′(x) =
n−1∑
k=0

(n− k)(k + 1)xk.

It now suffices to show that p′(x) ≥ 0 on [−1, 1]. One can check that we

have:

p′(x) =
nxn+2 − (2 + n)xn+1 + (2 + n)x− n

(x− 1)3
,

it thus suffices to show that nxn+2−(2+n)xn+1+(2+n)x−n
x−1 ≥ 0 for x ∈ [−1, 1].

This polynomial is equal to n(xn+1 + 1) − 2(xn + · · · + x) thus we need to

show that
(xn+1 + 1)

2
≥ xn + · · ·+ x

n
.

For x ∈ [−1, 0] we have (xn+1+1)
2 ≥ 0 while xn+· · ·+x = x(1−xn)/(1−x) ≤ 0,

hence we may assume x ∈ (0, 1]. We do this part by induction skipping the

case n = 1. We have:

xn+1 + · · ·+ x

n+ 1
=
nxx

n+···+x
n + x

n+ 1
≤ nxx

n+1+1
2 + x

n+ 1
.
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It remains to show that the inequality (nxx
n+1+1

2 +x)/(n+1) ≤ (xn+2+1)/2

holds. Subtracting the left hand side from the right hand side we obtain:

xn+2 − ((n+ 2)x− n− 1)

2(n+ 1)
,

which is positive as xn+2 is convex and the tangent line at 1 is given by

y = ((n+ 2)x− n− 1).

Appendix J. Proof of Proposition 3

From the set of possible lead time processes we look at some special

cases, in particular the highest/lowest possible correlation and how they

compare to having constant lead times. From these we will already see

that the impact of positive correlation will be bigger than that of negative

correlation.

In Lemma 1 we showed that:

L =

(
(1− α)`+ α (1− α)(1− `)
α(1− `) α`n + (1− α)

)
,

 α
α−1 ≤ ` if α ∈ [0, 12 ],

α−1
α ≤ ` if α ∈ [12 , 1].

We graphically represent this definition domain in Figure J.9 (i.e. {(α, `) ∈
R × R | L is the transition matrix of some Markov process} is shown). We

discuss the boundaries a, b, c, d and e of the domain of (α, `) and the special

line f .

(a, b) These correspond to having a steady state of
(

1 0
)

resp.
(

0 1
)

,

i.e. we have a lead time process which is constant.

(c) This part corresponds to having near perfect correlation (we get arbi-

trarily close to correlation 1), i.e. L =

(
1− ε ε

a · ε 1− a · ε

)
here ε > 0

and a > 0 are s.t. 0 < a · ε < 1 this ε. For low values of ε, L cor-

responds to having strong correlation, a can be chosen to control the

steady state of L. This means that if we observe the system at an

arbitrary point it has lead time 0 with probability α (one can find an

appropriate value for a s.t. L has steady state π =
(
α 1− α

)
) and

m with probability 1 − α but as we go further in the future the lead

time remains unchanged with high probability. We can thus see the
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Figure J.9: Definition domain of L in function of α and `.

lead time process as being an arbitrary, but unknown constant value.

As we have shown that
∂σ2

SF
∂` ≥ 0, we have for any fixed α that taking

the limit ` → 1 gives an upper bound for σ2SF. We find (by using the

continuity of f(x,m) in x):

σ2SF ≤ lim
`→1

(
σ2i.i.d. + 2µ2Dσ

2
L · f(`,m)

)
= σ2i.i.d. + 2µ2Dσ

2
L · f(1,m)

= σ2i.i.d. +

(
m− 1

m

)
µ2Dσ

2
L

= σ2LTD

Note that the influence of the correlation in the lead times is com-

pletely contained in µ2Dσ
2
V , thus the part of σ2SF which is due to the

correlation in the lead time process can not become larger than µ2Dσ
2
L.

This upper bound corresponds to the increase of variation going from

the i.i.d. case to perfect correlation. Moreover one can easily verify that

σ2LTD = (µL + 1)σ2D +µ2Dσ
2
L which corresponds to the upper bound we

found. These results are generalized in the multi-dimensional setting,

see Theorem 3.

(d, e) These correspond to the minimal possible correlation for every value
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of α, note that perfect negative can only be obtained in case of α = 1
2

since in this case we constantly switch between the two possible lead

times so both occur an equal amount of times. Evaluating in these

bounds gives us a lower bound for σ2SF. Fix some α ∈ (0, 1) then we

need to distinguish two cases.

α ≤ 1
2 : In this case we find:

σ2SF ≥ σ2i.i.d. + 2µ2Dσ
2
L · f

(
α

α− 1
,m

)
= σ2i.i.d. + 2µ2Dσ

2
L ·

1

m2
α

(
(α− 1)

((
α

α− 1

)m
− 1

)
−m

)

= σ2i.i.d. − 2µ2Dσ
2
L ·

(m− µL)
(
µL

((
1− m

µL

)m
− 1
)

+m2
)

m4

α ≥ 1
2 : In this case we find:

σ2SF ≥ σ2i.i.d. + 2µ2Dσ
2
L · f

(
α− 1

α
,m

)
= σ2i.i.d. + 2µ2Dσ

2
L ·

1

m2
(α− 1)

(
α

((
α− 1

α

)m
− 1

)
+m

)

= σ2i.i.d. − 2µ2Dσ
2
L ·

µL

(
m
((

µL
µL−m

)m
+m− 1

)
− µL

((
µL

µL−m

)m
− 1
))

m4

Note that both these cases include the case α = 1
2 and that for this α

we find:

σ2SF ≥ σ2i.i.d. + 2µ2Dσ
2
L ·

1

4m2

(
−2m+ (−1)m+1 + 1

)
= σ2const +

µ2Dσ
2
L

2m2
((−1)m+1 + 1). (J.1)

Here we see that
µ2Dσ

2
L

2m2 ((−1)m+1 + 1) is zero whenever m is even, we

see that in this case we get σ2SF = σ2const which corresponds to the case

σ2V = 0. Indeed, for m even and perfect negative correlation we find

that σ2V is zero, this might seem odd at first but trivial when we draw

a picture (see Figure J.10). We see that the general formulation of the

lower bound is a lot more complex than that of the upper bound, in

the more dimensional case, we will use the simple lower bound σ2const,
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Figure J.10: As we have perfect negative correlation the only two possibilities for our
lead time process are depicted in the above drawing (namely 0m. . . 0m and m0 . . .m0)
and in both cases the number of outstanding orders is given by m

2
.

which clearly always holds and can here be achieved for α = 1/2 and

m even.

(f) This line corresponds to having ` = 0, i.e. the case where we assume

{Lt} is an i.i.d. sequence, we get the transition matrix:

L =

(
α 1− α
α 1− α

)
.

As noted before, we get σ2SF = σ2i.i.d..

Appendix K. Proof of Proposition 4

We now look at σ2SF/σ
2
const for some special cases of σ2SF namely the

i.i.d. case, the lower bound and the upper bound. Let us denote these ratios

by Ri.i.d., Rlower and RLTD. In particular we get simple expressions for the

limit of m to infinity, which corresponds to the case where we have 2 possible,

sufficiently different, lead times. For the i.i.d. case we find:

Ri.i.d.(m,α) :=
σ2i.i.d.
σ2const

= 1 +
µ2Dσ

2
L

mσ2const
.

We introduce the notation θm :=
µ2Dσ

2
L

mσ2
const

→ α
µ2D
σ2
D

=: θ, we thus see that

Ri.i.d.(m,α) −→
m→∞

1+θ (note that the difference in going from constant lead

time to i.i.d. lead time increases as α increases). For the upper bound we

find that the ratio can not be greater than:

RLTD(m,α) := Ri.i.d.(m,α) +mθm,
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Figure K.11: For σ2
D = 9, µD = 4 (θ = 8

9
): The ratio of the variance of the shortfall for

i.i.d. resp. perfectly negative correlated lead times to constant lead times in function of
the maximum lead time m.

which tends to infinity at rate θ for m → ∞. For the lower bound we find

that Rlower splits into two parts depending on the value of α:R1
lower(m,α) = Ri.i.d.(m,α) + 2θm

m α
(

(1− α)
(

1−
(

α
α−1

)m)
−m

)
if α ≤ 1

2

R2
lower(m,α) = Ri.i.d.(m,α)− 2θm

m (1− α)
(
α
((

α−1
α

)m − 1
)

+m
)

if α ≥ 1
2 .

We also obtain convergence, namely:R
1
lower(m,α) −→

m→∞
1 + (1− 2α)θ

R2
lower(m,α) −→

m→∞
1 + (1− 2(1− α))θ

We take a look at the special case α = 1
2 and ` = −1. We find:

R1
lower(m,

1

2
) = 1 +

1

2
(1 + (−1)m+1)

θm
m
→ 1.

This is the only case for which the ratio of the lower bound tends to one. The

part ((−1)m+1+1) makes the ratio go up/down every subsequent value of m.

This effect is triggered by the variance of the amount of outstanding orders.

See Figure K.11 for the convergence of Ri.i.d. and Rlower with σ2D = 9, µD = 4

and α = 1/2.
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Figure L.12: The different lag−k correlations for the Markov processes given in Appendix
L for ε = 1/25, 1/2.

Appendix L. It is no longer possible to find functions (fm)m∈N0

s.t. `m = fm(`)

Consider for any ε ∈ (0, 1) the transition matrix:

Pε :=

 0 1− ε ε

ε 0 1− ε
1− ε ε 0

 ,

with state space S = {0, 1, 2}. Then we clearly have independent of ε the

steady state π =
(
1
3

1
3

1
3

)
. One can easily calculate that independent of

ε we have ` = −1/2 while `2 = −1/2−3(−1+ε)ε. This means that we have

found multiple (even uncountably infinite) Markov processes with the same

steady state which all have the same lag−1 correlation but different lag−2

correlation (see Figure L.12). This example also shows that we do not have

that the variance of the shortfall is non-decreasing in function of the lag−1

correlation, we see in Figure L.12 that we can change the variance of the

shortfall by changing ε whilst the lag−1 correlation remains fixed.
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Appendix M. Proof of Theorem 3

The lower bound is trivial. For the upper bound, assume we have a

countable state space S and steady state π. We calculate:

σ2V = Var

( ∞∑
k=0

δ{Lt−k > k}
)

=

∞∑
k=0

Var(δ{Lt−k > k}) + 2 ·
∑
k<l

Cov(δ{Lt−k > k}, δ{Lt−l > l})

For k < l we note that:

E[δ{Lt−k > k}δ{Lt−l > l}] ≤ E[δ{Lt−l > l}]
= E[δ{Lt > k}δ{Lt > l}],

which shows that Cov(δ{Lt−k > k}, δ{Lt−l > l}) ≤ Cov(δ{Lt > k}, δ{Lt >
l}). Using this inequality and the fact that we have for any t, Lt =∑∞

k=0 δ{Lt > k}, we find:

σ2V ≤ Var

( ∞∑
k=0

δ{Lt > l}
)

= σ2L.

This completes the proof by applying Lemma 3.
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